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RESUMO. O propósito desta tese é estudar fibrações de Lefschetz simpléti-
cas, nas quais os ciclos evanescentes são subvariedades Lagrangianas das
fibras. Para a descrição da teoria de interseção dos ciclos evanescentes
utilizamos cohomologia de Floer Lagrangiana, cujo conceito revemos nesta
tese. Apresentamos três exemplos principais e de caráteres distintos:

(1) twists de Dehn generalizados,
(2) o “espelho” da reta projetiva, e
(3) uma fibração numa órbita adjunta de sl(3,C).

O terceiro destes exemplos é original e utiliza um teorema recente de Gasparim-
Grama-San Martin.

ABSTRACT. The objective of this thesis is to study symplectic Lefschetz
fibrations, in which the vanishing cycles are Lagrangian submanifolds of
the fibres. In order to describe the intersection theory of vanishing cycles
we use Lagrangian intersection Floer cohomology, which we review. We
present three main examples of distinct characters:

(1) generalised Dehn twists,
(2) the “mirror” of the projective line, and
(3) a fibration on an adjoint orbit of sl(3,C).

The third of these examples is original and uses a recent theorem of Gasparim-
Grama-San Martin.
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INTRODUÇÃO

O propósito desta tese é estudar fibrações de Lefschetz simpléticas, nas
quais os ciclos evanescentes são subvariedades Lagrangianas das fibras. Para
a descrição da teoria de interseção dos ciclos evanescentes utilizamos coho-
mologia de Floer Lagrangiana, cujo conceito revemos nesta tese. Apresenta-
mos três exemplos principais e de caráteres distintos:

(1) twists de Dehn generalizados,
(2) o “espelho” da reta projetiva, e
(3) uma fibração numa órbita adjunta de sl(3,C).

O terceiro destes exemplos é original e utiliza um teorema recente de Gasparim-
Grama-San Martin.

Um modo de criar uma fibração de Lefschetz é usar o blow-up de um feixe
de Lefschetz no lugar de base. Feixes de Lefschetz são de grande interesse
devido a um teorema de Donaldson o qual afirma que qualquer variedade de
dimensão 4 que admite uma forma simplética (integral) também admite um
feixe de Lefschetz. Além disso, Gompf mostrou a recíproca: uma variedade
de dimensão 4 que admite um feixe de Lefschetz também admite uma forma
simplética. Ambas afirmações juntas fornecem uma tradução entre geome-
tria algébrica e geometria simplética. Conjectura-se que tal tradução seja
bastante mais ampla como previsto pela simetria de espelho segundo Kont-
sevich, o qual afirma que exista uma equivalência da categoria derivada de
feixes coerentes de uma variedade com a categoria de Fukaya do seu “es-
pelho”. Uma maneira de estudar a categoria de Fukaya é via a categoria de
ciclos evanescentes das fibrações de Lefschetz.

Na seção 1 apresentamos os resultados básicos da geometria simplética
que necessitamos. Nas seções 2 e 3 introduzimos fibrações de Lefschetz topológ-
icas e simpléticas, e provamos que não existe fibração de Lefschetz alguma
sobre CPn (com base CP1). Também apresentamos exemplos de feixes de Lef-
schetz e mostramos como construir fibrações de Lefschetz a partir deles. Na
seção 4 apresentamos o primeiro dos nossos três exemplos principais: o twist
de Dehn generalizado. Na seção 5 revisamos a teoria de Picard-Lefschetz e
mostramos como fibrações de Lefschetz são em certo sentido o análogo com-
plexo das aplicações de Morse; isto é, o seu comportamento em volta dos pon-
tos críticos determina a topologia do espaço total e das fibras regulares. Essa
similaridade com a teoria de Morse também se reflete na descrição da homolo-
gia de Floer dada na seção 6. De fato, a homologia de Floer é considerada o
análogo da homologia de Morse em dimensão infinita. A seção 7 é destinada
aos dois exemplos principais restantes: o primeiro é original e utiliza um re-
sultado recente de Gasparim-Grama-San Martin; o segundo é o “espelho” da
reta projetiva.
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INTRODUCTION

The objective of this thesis is to study symplectic Lefschetz fibrations, in
which the vanishing cycles are Lagrangian submanifolds of the fibres. In or-
der to describe the intersection theory of vanishing cycles we use Lagrangian
intersection Floer cohomology, which we review. We present three main ex-
amples of distinct characters:

(1) generalised Dehn twists,
(2) the “mirror” of the projective line, and
(3) a fibration on an adjoint orbit of sl(3,C).

The third of these examples is original and uses a recent theorem of Gasparim-
Grama-San Martin.

One method of creating a Lefschetz fibration is by blowing up a Lefschetz
pencil at its base locus. Lefschetz pencils have become of great interest due
to a theorem of Donaldson that every manifold of dimension 4 that admits an
(integral) symplectic form also admits a Lefschetz pencil. A theorem of Gompf
shows the converse: that any 4 dimensional manifold admitting a Lefschetz
pencil also admits a symplectic form. This is one example of a link between
algebraic geometry and symplectic geometry. In fact, a much deeper connec-
tion between these two areas is predicted by Kontsevich’s homological mirror
symmetry conjecture as an equivalence of the category of derived categories
of coherent sheaves of one manifold with the Fukaya category of Lagrangian
submanifolds of its “mirror”. One context for studying the Fukaya category
is via the category of vanishing cycles of Lefschetz fibrations.

Section 1 gives an introduction to the basic results of symplectic geome-
try we require. In Sections 2 and 3 we introduce topological and symplectic
Lefschetz fibrations, proving in particular that there do not exist any Lef-
schetz fibrations with total space CPn (with base space CP1). We also present
a number of examples of Lefschetz pencils and illustrate how to construct
Lefschetz fibrations from them. In Section 4 we present the first of our three
main examples: that of the generalised Dehn twist. Section 5 gives an ac-
count of Picard-Lefschetz theory and shows how Lefschetz fibrations are in
some sense the complex analogue of Morse functions; indeed, their behaviour
near the singularities determines the topology of the total space and regu-
lar fibres. This Morse-like flavour is also reflected in the description of Floer
homology we give in Section 6. Indeed, Floer homology is considered the infi-
nite dimensional analogue of Morse homology. In Section 7 we finish with our
two remaining main examples: the first is original and uses a recent result
by Gasparim-Grama-San Martin; the second is the “mirror” of the projective
line.
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1. SYMPLECTIC MANIFOLDS

1.1. Theorem. Let Ω be an antisymmetric form on a vector space V. Then
there exists a basis B = {u1, . . . ,uk, e1, . . . , en, f1, . . . , fn } with respect to which
Ω has the matrix 0k 0 0

0 0 idn
0 − idn 0

 .=
n∑

i=1
ei ∧ f i, (1)

where { e1, . . . , en, f 1, . . . , f n } is the dual basis to B. We shall call B the stan-
dard basis of an antisymmetric form.

1.2. Corollary. If V admits a non-degenerate antisymmetric form, then V has
even dimension.

1.3. DEFINITION. We say that an antisymmetric form Ω on V is a symplectic
form if the map Ω : V → V∗,v 7→Ω(v,−) is bijective. Any vector space which
admits a symplectic form is called a symplectic space. We denote such a space
by (V ,Ω).

A linear isomorphism ϕ : (V ,Ω) → (V ′,Ω′) between symplectic spaces is
symplectomorphism if it preserves the symplectic form, i.e. ϕ∗Ω′ =Ω.

1.4. Remark. Since the matrix of a symplectic form must be non-singular, it is
easily seen from Theorem 1.1 that any symplectic space is even dimensional.

1.5. DEFINITION. A subspace L of a symplectic space V is called Lagrangian
if Ω|L = 0 and dimL = 1

2 dimV .

1.6. DEFINITION. A symplectic form ω on a manifold M is a closed 2-form
which is symplectic on every tangent space. A symplectic manifold is a smooth
manifold M with a symplectic form ω. We write (M,ω) to denote such a man-
ifold.

1.7. Example. The simplest example of a symplectic manifold is (R2n,ω0),
where

ω0 :=
n∑
1

dxi ∧dyi

for coordinates (x1, . . . , xn, y1, . . . , yn).

1.8. Theorem. Any complex (Riemann) manifold (M, J, g) admits the sym-
plectic structure defined by ω(X ,Y )= g(X , JY ).

1.9. Example. Continuing Example 1.7, we can identify Cn with R2n and pull-
back the symplectic structure to make Cn symplectic too. Indeed, in complex
coordinates we get the following expression for the symplectic form:

ω0 = i
2

n∑
1

dzi ∧dzi.

Moreover, ω0 is compatible with the usual complex structure J and hermitian
metric g in the sense that ω0(X ,Y )= g(X , JY ), making Cn a Kähler manifold.

1.10. Example. Complex projective space Pn :=CPn also admits a symplectic
structure. With the usual complex structure on Pn, we can use the Fubini-
Study metric g to define a symplectic form via ω(X ,Y ) := g(X , JY ).
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The Fubini-Study metric can be defined via the S1-bundle

p : S2n+1 →Pn

z 7→ [z]

by identifying the horizontal tangent space ker p∗ with the tangent space
of Pn. This allows the restriction of the round metric g◦ to the horizontal
tangent space to descend to a metric g on Pn, i.e. g◦(X ,Y )= g(p∗X , p∗Y ) for
any horizontal vectors X ,Y .

To show that this defines a bona fide metric, we must show that the S1-
action

(1) acts on S2n+1 by isometries,
(2) satisfies p ◦ g = p for all g ∈S1, and
(3) acts transitively on each fibre.

Item 1 is clear since g◦(λX ,λY ) = λλg◦(X ,Y ) = g◦(X ,Y ) for λ ∈S1 ⊂ C1. The
defining equivalence relation on C2n+1 guarantees that Item 2 is satisfied.
The fibre over [z0, . . . , zn] is given by {λ(z0, . . . , zn) |λ ∈C1 }= {λ(z0, . . . , zn) |λ ∈S1 },
the orbit of (z0, . . . , zn) ∈S1, showing that Item 3 is indeed satisfied.

1.11. Lemma. A manifold M2m admits a symplectic form if and only if ωm is
a volume form on M.

Proof. By Theorem 1.1, a 2-form ω can be written locally as

ω=
n∑
1

ei ∧ f i,

for some n ≤ m. If ω is non-degenerate, then n = m and the m-th exterior
product is given by

ω∧m = m!
m∧

i=1
ei ∧ f i 6= 0

where we used the fact that (ei∧ f i)∧ (e j ∧ f j)= (e j ∧ f j)∧ (ei∧ f i). Therefore,
ω∧m is a volume form.

Conversely, if ω is degenerate, then n < m and the m-th exterior product is
zero and thus ω∧m is not a volume form. �

1.12. Remark. Since the existence of a volume form is equivalent to having
an orientation, we now know that any non-orientable manifold, such as the
Möbius strip, does not admit a symplectic structure.

1.13. DEFINITION. We say that a smooth map ϕ : (M,ω) → (M′,ω′) of mani-
folds is a symplectomorphism if it preserves the symplectic form, i.e. ϕ∗ω′ =ω.

1.14. Theorem (Darboux). Let (M,ω) be a symplectic manifold of dimension
2n and p ∈ M. Then there exists a local coordinate system (U , x1, . . . , xn, y1, . . . , yn)
such that

ω=
n∑
1

dxi ∧d yi

on U. Such a coordinate system is called a Darboux system.

1.15. Proposition. The sphere Sn admits a symplectic structure only for n =
2.
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Proof. We can immediately exclude all odd dimensional spheres by Remark 1.4.
Let n = 2k for k > 1 and suppose for a contradiction that ω is a symplectic

form on S2k. If ωk were exact, say dα=ωk, then Stokes’ theorem would give

0 6=
∫
Sk
ωk =

∫
∂Sk

α= 0,

a contradiction. Thus, ωk is not exact and defines a non-zero element 0 6=
[ωk] ∈ Hn(S2k,R). This implies that 0 6= [ω] ∈ H2(S2k,R), which can be seen by
considering the cohomological product or by direct calculation: ωk = (dα)k =
d(α∧ (dα)n−1). But

H2
dR

(
S2k;R

)
=

{
R if k = 1
0 if k > 1

,

which is a contradiction if k > 1.
The symplectic structure on S2 is given by pulling back the symplectic

structure of P1 via a smooth identification of S2 with P1. �

1.16. Theorem. Given any manifold X, the associated cotangent manifold
T∗X is a symplectic manifold.

Proof. Let p = (x,ξ) ∈ T∗X and define the tautological 1-form αp := (π∗ξ)p,
where π : T∗X → X is the natural projection. Now define the canonical sym-
plectic 2-form ω :=−dα.

To see that this does indeed define a symplectic form, we write it in a local
system of coordinates

(
π−1(U), x1, . . . , xn,ξ1, . . . ,ξn

)
. First, αp

(
∂
∂xi

)
= ξx

(
∂
∂xi

)
=

ξi, so that

α=
n∑

i=1
ξidxi (2)

in π−1(U). It now follows that

ω=
n∑

i=1
dxi ∧dξi, (3)

which is ω0 from Example 1.7. �

1.17. DEFINITION. Let (M,ω) be a symplectic manifold. We say that a
submanifold i : L → M is a Lagrangian submanifold if i∗ω ≡ 0 and dimL =
1
2 dim M.

1.18. Theorem. Let µ be a 1-form on a manifold X. Then

Xµ := {
(x,µx)

∣∣ x ∈ X ,µx ∈ T∗
x X

}
is a Lagrangian submanifold of T∗X if and only if µ is a closed form.

Proof. First of all, Xµ is an embedded submanifold of T∗X since it is the
image of the section µ. Let sµ : X → T∗X be this embedding, i.e. the 1-form µ

considered as a function. Then(
s∗µα

)
x
= (

dsµ
)∗
x αp

= (
dsµ

)∗
x (dπ)∗pµx

= (πs)∗x µx

=µx.

(4)
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Now let τ : X → Xµ be the diffeomorphism making the diagram commute

X T∗X

Xµ

sµ

τ
i

where i : Xµ → T∗X is the inclusion. By definition, Xµ is a Lagrangian sub-
manifold if and only if i∗dα= 0, which occurs if and only if τ∗ i∗dα= 0 since
τ is a diffeomorphism. Now, τ∗ i∗dα = (iτ)∗dα = s∗µdα = d(s∗µα) = dµ, where
the last identity follows by eq. (4). �

1.19. Theorem. Let Z be a submanifold of X. Then the conormal bundle
N∗Z is a Lagrangian submanifold of T∗X.

Proof. For the inclusion i : N∗Z → T∗X , we need to show that i∗ω = 0. We
do this by first showing that i∗α= 0. To that end, let (U , x1, . . . , xn) be a local
coordinate system around x ∈ Z adapted to Z, i.e. xk+1, . . . , xn = 0 on Z. Thus,
N∗Z ∩T∗U is defined by xk+1 = ·· · = xn = 0 = ξ1 = ·· · = ξk. Combining this
with eq. (2), we see that α=∑

i>k ξidxi, and so

i∗αp =α|Tp(N∗Z)

= ∑
i>k

ξidxi|span
{

∂
∂x j

∣∣∣ j≤k
}

= 0.

�

2. TOPOLOGICAL LEFSCHETZ FIBRATIONS

2.1. DEFINITION. A holomorphic Morse function on a manifold X is a holo-
morphic function f : M →P1 which has only non-degenerate critical points.

2.2. DEFINITION. Let X be a complex manifold of dimension n and f : X →P1

a surjective holomorphic fibration. We say that f is a topological Lefschetz
fibration if

(1) there are finitely many critical points p1, . . . , pk, and f (pi) 6= f (p j) for
i 6= j;

(2) any pair of regular fibres is homeomorphic;
(3) for each critical point p, there are complex neighbourhoods p ∈U ⊂ X ,

f (p) ∈ V ⊂ P1 on which f|U is represented by the holomorphic Morse
function

f|U (z1, . . . , zn)= z2
1 +·· ·+ z2

n,
and such that crit f ∩U = { p }; and

(4) the restriction freg := f |X−⋃
X i to the complement of the singular fibres

X i is a locally trivial fibre bundle.

2.3. Remark. There are many examples in the literature where a Lefschetz
fibration is defined as above but with a target of C instead of P1. We will also
refer to such fibrations as Lefschetz fibrations but will assume the target
space to be P1 unless explicitly stated otherwise.
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2.4. Example. The holomorphic Morse function

m : Cn+1 →C

(z0, . . . , zn) 7→
n∑
1

z2
j

may not be a Lefschetz fibration under our definition, but it does give us a
flavour of the local behaviour in virtue of Item 3. We show here that m is a
fibration satisfying Items 1, 2 and 4 of Definition 2.2.

(Item 1) There is precisely one critical point at 0.
(Item 2) The map

ϕλ : m−1(λ)→ m−1(1)

z 7→ zp
λ

is a homeomorphism for any λ ∈C− {0 }.
(Item 4) Define `θ := { re2πiθ | r ∈R≥0 } for θ ∈ [0,2π]. Then the local trivial-

ity condition is satisfied for U`θ :=C−`θ. Indeed, the function

ϕ : m−1(U`θ )→U`θ ×m−1(1),

z 7→ (
m(z),ϕm(z)(z)

)
,

is a diffeomorphism and the following diagram commutes.

m−1(U`θ ) U`θ ×m−1(1)

U`θ

ϕ

m
proj

2.5. DEFINITION. Let (X ,ω) be a symplectic manifold of dimension 2n, A ⊂ X
a codimension 4 submanifold, and f : X − A →P1 a smooth map. We say that
f is a topological Lefschetz pencil if

(1) there are finitely many critical points, p1, . . . , pk, and f (pi) 6= f (p j) for
i 6= j;

(2) for each a ∈ A, there is a compatible local system of complex coordi-
nates U in which

f : (z1, . . . , zn) 7→ z1

z2
∈P1

and where A∩U = { z ∈U | z1(z)= z2(z)= 0 }; and
(3) f is represented by the holomorphic Morse function

f (z1, . . . , zn)= z2
1 +·· ·+ z2

n

in some compatible local system of complex coordinates around each
critical point pi.

We denote a topological Lefschetz pencil by (X , A, f ).
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2.6. Theorem. [Don99] Let ω be a symplectic form on a manifold M of real
dimension 4. If [ω] ∈ H2(M,R) is the reduction of an integral class h, then M
admits a Lefschetz pencil.

2.7. Theorem. [GS91] If a 4-manifold admits a Lefschetz pencil, then it ad-
mits a symplectic structure.

2.8. Theorem. [GS91] The blow up of a Lefschetz pencil on a complex surface
at the base locus is a Lefschetz fibration.

2.9. Example. We present here an explicit example of blowing up a Lefschetz
pencil at the base locus. Let p0 := x0, p1 := x1 be two homogeneous polynomi-
als on C3. The base locus is then given by B = { [0,0,1] }, and the function

π : P2 −B →P1

x = [x0, x1, x2] 7→ [p1(x),−p0(x)]= [x1,−x0]

is a Lefschetz pencil. The fibres are given by

π−1 ([s0, s1])= { [−s1, s0, s2] | s2 ∈C }
=V (s0 p0 + s1 p1)−B

=P1 −∞.

To construct a Lefschetz fibration from this pencil, we need to blow up π at
the base locus. Writing P2 =U0 ∪U1 ∪U2 as the union of the standard open
sets U i := { [x0, x1, x2] | xi 6= 0 }, we see that B ⊂U2 ∼= C2. Blowing up U2 at B
(which we can think of as C2 at (0,0)) gives

Ũ2
B = { ([y0, y1, y2], [t0, t1]) | t0 y0 =−t1 y1 } .

We obtain the desired blow-up by glueing this onto the remaining standard
open sets, i.e.

P̃2
B = (

U0 ∪U1 ∪Ũ2
B
)
/∼,

where [x0, x1,1] ∼ ([y0, y1,1], [t0, t1]) if and only if [x0, x1,1] = [y0, y1,1] and
(x0, x1) 6= (0,0). The Lefschetz fibration is then given by

π̃ : P̃2
B →P1

[x0, x1, x2] 7→π(x) if (x0, x1) 6= (0,0)

([y0, y1, y2], [t0, t1]) 7→ [t0, t1] if y2 6= 0.

This is well-defined on the overlap since, for [x0, x1,1] ∼ ([y0, y1, y2], [t0, t1]),
π̃([y0, y1,1], [t0, t1])= [t0, t1]= [y1,−y0]= [x1,−x0]=π([x0, x1,1]).

The fibres of this Lefschetz fibration are homeomorphic to P1 since π̃−1([s0, s1])=
{ [−s1, s0, s2] | s2 ∈C }∪ { ([0,0,1], [s0, s1]) }∼=P1.

We now wish to prove the two non-existence results of Theorems 2.17
and 2.18, but shall first require a number of lemmas.

2.10. Lemma. [Spa66, Theorem 2.8.12] Let p : E → B be a fibration, b ∈ B,
and R a ring. Then there is a natural action of π1(B,b) on H∗(Fb,R).

2.11. DEFINITION. A fibration is said to be orientable if the action of Lemma 2.10
is the trivial action.

2.12. Lemma. Any fibration p : E → B which has a simply connected base is
orientable.
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2.13. Lemma. [Spa66, Theorem 3.1.1] Let p : E → B be a fibration that is
orientable over a field K, has fibre F, and has path-connected base B. Then
the Euler characteristic with coefficients in the field K is multiplicative; that
is, it satisfies

χ(E)= χ(F) ·χ(B).

2.14. Lemma. For coefficients in a ring R,

Hi(Pn,R)=
{

R if i = 2k < 2n
0 otherwise

.

Proof. Consider Pn as the quotient of Sn via the action of S1 and define the
function

f : Pn →R

[z0, . . . , zn] 7→∑
i

i‖zi‖2.

This is well-defined since we are only considering two points to be equivalent
up to scalar multiples in S1.

We show that f is a Morse function with critical points pi = [e i] of index
2i (where e i denotes the standard basis vector in Cn+1). Using the relation∑‖zi‖2 = 1 for a point z ∈ Pn, we can express f on the canonical open set
U j =

{
[z0, . . . , zn] ∈Pn ∣∣ z j 6= 0

}
as

j+∑
i

(i− j)
(
x2

i + y2
i
)
,

where zi = xi +
p−1yi. It is clear that there is precisely one critical point at

the origin of U j; that is, at p j := [e j]. Moreover, this critical point is non-
degenerate since the Hessian

H f =
(
A 0
0 A

)
, A := 2



− j
− j+1

. . .
−1

1
. . .

− j+n


has determinant (n− j)!( j!)(−1) j22n 6= 0. The index of p j is given by the num-
ber of negative eigenvalues of H f , which can clearly be seen on the above
matrix to be 2 j.

Morse functions furnish the manifold with the homotopy type of a CW-
complex with an i-cell for every critical point of index i. In our case, we have
exactly one cell in every even dimension. Therefore, the CW chain complex is

· · · 0 R 0 R ,

the homology of which is as stated. Homotopically equivalent manifolds have
the same homology and it is well-known that the cellular homology groups
are isomorphic to the singular homology groups. �

2.15. Corollary. χ (Pn)= n+1.
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2.16. Remark. Although Corollary 2.15 can be proved directly from the defini-
tion of the Euler characteristic as the alternating sum of the Betti numbers,
it is also known that

χ=∑
(−1)λCλ,

where Cλ is the number of critical points of index λ (with respect to any Morse
function). Our proof of Lemma 2.14 then gives the same Euler characteristic
by summing the n+1 critical points pi.

We are now ready to prove our non-existence results.

2.17. Theorem. There are no continuous fibrations f : P2k →P1 for any k.

Proof. Suppose there exists a fibration f : Pn →P1 for some n = 2k. By Corol-
lary 2.15, χ (Pn)= 2k+1, which is odd, and χ

(
P1)= 2. However, by Lemma 2.13,

2k+1= χ (Pn)= χ (F) ·χ(
P1)= 2 ·χ(F), which is a contradiction. �

2.18. Theorem. There are no differentiable non-constant maps f : Pn → P1.
In particular, there are no smooth fibrations f : Pn →P1.

Proof. Suppose for a contradiction that there exists such a function f . This
map induces a map of cohomology groups f ∗ : H∗(P1,Z) → H∗(Pn,Z). By
Lemma 2.14, both groups are isomorphic to Z so we can choose a gener-
ator [ω] ∈ H2(P1,Z), the class of the symplectic form for example. Since
[ω]2 ∈ H4(P1,Z)= 0 and H4(Pn,Z)=Z, we know that f 2 = 0. But this forces f
to be constant by the non-degeneracy of ω, contradicting the assumption that
f is non-constant. �

2.19. Corollary. There are no topological Lefschetz fibrations f : Pn → P1 for
any n.

2.20. Remark. It is known that any symplectic 4-manifold admits a Lefschetz
pencil [Don99], which can in turn be blown up to a Lefschetz fibration. The
space P2 is symplectic but Theorem 2.17 tells us that we cannot hope to have
a Lefschetz fibration without blowing up.

3. SYMPLECTIC LEFSCHETZ FIBRATIONS

3.1. DEFINITION. Let X be a complex manifold and ω a symplectic form
making (X ,ω) into a symplectic manifold. We say that a topological Lefschetz
fibration is a symplectic Lefschetz fibration if

(1) the smooth part of any fibre is a symplectic submanifold of (X ,ω); and
(2) for each critical point pi, the form ωpi is non-degenerate on the tan-

gent cone of X i at pi.

3.2. Theorem. [Smi06] Let p : E → B be a holomorphic fibration where E is a
quasi-projective variety and a Kähler manifold. Then any fibre of the restric-
tion p : p−1(B0)→ B0 to a submanifold B0 → B is a symplectic submanifold of
E.

3.3. Example. Our local model m from Example 2.4 is a symplectic fibration
satisfying Items 1 and 2 of Definition 3.1.
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(Item 1) The regular fibre m−1(1) is symplectic by Theorem 3.2. We can
even give an explicit description of it as the cotangent bundle of the sphere
(equipped with the canonical symplectic form)

T∗Sn = {
(q, p) ∈Rn ×Rn ∣∣ ‖q‖ = 1,〈q, p〉 = 0

}
(5)

via the symplectomorphism

ψ : m−1(1)→ T∗Sn

z 7→
(
Re z
|Re z| ,−|Re z|Im z

)
.

Note that fixing a point on the sphere in the image does not fix Re z.
The smooth part of the critical fibre is given by

m−1(0)− {0 }= {
z ∈Cn+1 ∣∣ |Re z|2 −|Im z|2 = 0= 〈Re z,Im z〉}− {0 } .

We can see that it is a symplectic submanifold by considering the restriction
M := m|Cn+1\{0 } : Cn+1 \ {0 } → C. Then M−1(0) = m−1(0) \ {0 }, which is a sym-
plectic submanifold by Theorem 3.2.

(Item 2) The affine variety m−1(0) is defined by precisely one homogeneous
equation and is, therefore, a cone. It follows that the tangent cone at 0 is the
variety itself. We have just seen that the restriction of ω to this variety is a
symplectic form and, thus, non-degenerate.

3.4. DEFINITION. A topological Lefschetz Fibration f : X → P1 is said to be
orientable if X is orientable and the local system of coordinates in Item 3 can
be chosen to be compatible with the orientations of X and P1.

3.5. Proposition. [GS91, Theorem 10.2.18] A topological Lefschetz fibration
f : X →P1 of curves of genus g ≥ 2 on a 4-manifold X is orientable if and only
if X admits a symplectic structure.

3.6. Example. Let p0 := x3
0+x3

1 and p1 := x3
0+x3

2. In the base locus B, x0x1x2 6=
0 and so we can assume, without loss of generality, that x2 = 1. Therefore,

B =
{

[−e2kπi/3, e2kπi/9,1]
∣∣∣ k = 0, . . . ,8

}
.

The corresponding Lefschetz pencil is given by

π : P2 −B →P1

[x0, x1, x2] 7→ [p1(x),−p0(x)]

= [x3
0 + x3

2,−x3
0 − x3

3]

and the fibres are π−1([s0, s1])=V (s0 p0 + s1 p1)−B. By the degree-genus for-
mula, the fibres have genus 1. Thus, there are cycles. To show that there are
vanishing cycles, the fundamental theorem of Picard-Lefschetz theory Theo-
rem 5.7 tells us that it is sufficient to show that

f := x3
0 + x3

2

x3
0 + x3

1
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has singularities. Indeed,

∂ f
∂x0

= (x3
0 + x3

1)3x2
0 − (x2

0 + x3
2)3x2

0

(x3
0 + x3

1)2
= (x3

1 − x3
2)3x2

0

(x3
0 + x3

1)2

∂ f
∂x1

= −(x3
0 + x3

2)3x2
1

(x3
0 + x3

1)2

∂ f
∂x2

= 3x2
2

x3
0 + x3

1
.

Solving for 0 shows us that [1,0,0] and [0,1,0] are critical points.

4. GENERALISED DEHN TWISTS

We use the representation of the cotangent bundle of the sphere given in
Example 3.3 and define

T∗
ε S

2 := {
(q, p) ∈ T∗S2 ∣∣ ‖p‖ < ε}

for ε> 0. We can define the Hamiltonian function

µ : T∗S2 →R

(q, p) 7→ ‖p‖,

which is smooth on the complement of S2. It is well known that the integral
curves for µ2/2 are the geodesics. It can then be shown that the Hamilton-
ian flow, ϕµt , transports a cotangent vector p along the unit speed geodesic
through p. It cannot be extended smoothly to the total space for all t, but ϕµπ
does extend smoothly to the total space as the antipodal map on S2.

The flow of µ gives us a smooth circle action on T∗S2 \S2 given by eit ·
(q, p)=ϕµt (q, p). This is well-defined since the geodesics on S2 are closed and
of period 2π. This action can be written explicitly as

eit · (q, p)=
(
cos(t)q+sin(t)

p
‖p‖ ,cos(t)p−sin(t)q‖p‖

)
.

Note that ϕµπ(x) = (−1) · x = −x, which we call the antipodal map and denote
by A.

We now want to modify ϕ
µ
t in such a way as to obtain a function with

compact support. Given a function r ∈ C∞(R,R), we have

ϕ
r(µ)
t (x)= eitr′(µ(x)) · x.

Suppose further that

r(t)= 0 for t ≥ ε

2
and r(−t)= r(t)− t for all t.

Then R(t) := r(t)− t/2 is even, and thus there exists a smooth function ρ ∈
C∞(R) such that R(t) = ρ(t2). It then follows that R(µ) is smooth on T∗S2

and induces a Hamiltonian flow on all of T∗S2. But

ϕ
R(µ)
2π = ei2πr′(µ)−iπ

= ei2πr′(µ)e−iπ = e−iπei2πr′(µ)

= τA = Aτ
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showing that τ commutes with A. It also follows that τ is a symplectic auto-
morphism since both A and ϕ

R(µ)
2π are.

4.1. Lemma. [Sei97, Lemma 2.1]. Let r ∈ C∞(R,R) be a function such that

r(t)= 0 for t ≥ ε

2
, (6)

r(t)= r(−t)+ t for all t. (7)

Then

(1) the map

τ : T∗S2 7→ T∗S2

x 7→ϕ
r(µ)
2π (x)= ei2πr′(µ) · x

is a symplectic automorphism supported inside T∗
ε S

2,
(2) τ◦ A = A ◦τ,
(3) any two choices of r are isotopic in Autc(T∗

ε S
2).

4.2. Lemma. Let (M,ω) be a compact symplectic 4-manifold and V ⊂ M an
embedded Lagrangian 2-sphere. Then there is an ε> 0 and a symplectic em-
bedding i : T∗

ε S
2 → M with i(S2)=V.

Moreover, for any two such embeddings i, i′ as above such that i−1 i′|S2 ∈
Diff(S2) is diffeotopic to the identity, there is a δ < ε such that i|T∗

δ
S2 can be

deformed into i′|T∗
δ
S2 within the space of symplectic embeddings which map

S2 to V .

4.3. Proposition. Choose ε > 0, an embedding i as in Lemma 4.2, and a
function r as in Lemma 4.1. Then

τV (x)=
{

iτi−1 if x ∈ Im(i)
x if x ∉ Im(i)

(8)

defines a symplectic automorphism of M. Moreover, τV maps V to itself but
reverses its orientation. It is independent of r and i up to symplectic isotopy.

4.4. DEFINITION. The function τV from Proposition 4.3 is called the gener-
alised Dehn twist along V .

5. VANISHING CYCLES

5.1. DEFINITION. Let f : X → P1 be a Lefschetz fibration. Throughout this
section we denote the set of regular points by Xreg, the set of regular values
by P1

reg, and fix a regular fibre Xρ.
Given a loop γ : I → P1

reg, we can pull back the fibre bundle freg to get the
fibre bundle γ∗ freg. We can assume has total space Xρ × I since any fibre
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bundle over a contractible space is trivial.

Xρ× I

I

Xreg

P1
reg

Γ

γ∗ freg freg

γ

The map Γ(−,0) = id but Γ1 := Γ(−,1) gives us what shall be called the geo-
metric monodromy of γ. This induces a map of homology groups

(Γ1)∗ ∈Aut
(
H∗

(
Xρ

))
,

called the algebraic monodromy of γ. Since this map depends only on the
homotopy class of γ, we can define the monodromy of f as the action

π1

(
P1

reg

)
→Aut

(
H∗(Xρ)

)
.

We seek to understand this action in terms of the behaviour of f near its
critical points.

Choose a regular value ρ ∈ P1 and for each critical value qi ∈ P1 a disk
D i small enough so that they are pairwise disjoint. Let ai be arcs such that
ai(0) = ρ and ai(1) ∈ ∂D i, and let bi be the arcs traversing ∂D i in the anti-
clockwise direction, starting at bi(0) = ai(1). Then we can define the loops
γi := ai ∗bi ∗ai, where ∗ denotes concatenation of paths and ai(t) := ai(1− t).

5.2. Lemma. [ABKP00] Denote the critical points of the Lefschetz fibration by
qi for i = 1, . . . ,k and define the paths γi as above. Then

π1
(
P1 \{ qi | i = 1, . . . ,k }

)= 〈
γ1, . . . ,γk

∣∣γ1 · · ·γk = 1
〉

.

The preceeding lemma shows that we need only consider the action of the
generators γi on the homology groups to understand the monodromy action.
The full expression of the monodromy action is given in terms of the vanish-
ing cycles, which we now define.

5.3. Lemma. [ABKP00] There are retractions r i : Xρ → X i for each singular
fibre X i.

5.4. DEFINITION. A geometric vanishing cycle is a Lagrangian sphere si ∈ Xρ

such that r i(si) is a point. Now let XD := f −1(D), where D is a disk in P1

containing all of the critical values. Then an algebraic vanishing cycle is
understood as an element δ ∈ ker

(
ι∗ : Hn−1(Xρ)→ Hn−1(XD)

)
, where ι is the

inclusion map ι : Xρ → XD . We denote the set of all algebraic vanishing cycles
by VXρ

.

5.5. Example. We look again at the local model given by the symplectic fibra-
tion m from Example 3.3. The fact that m−1(t)∩Rn+1 =Sn

t shrinks to a point
as t → 0 shows that they are our vanishing cycles. Note that they correspond
to the Lagrangian spheres given by the zero sections of of T∗Sn under our
identification.
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5.6. Example. Unfortunately, Example 2.9 does not contain any singularities
or vanishing cycles. Indeed, any polynomial on P2 of degree 1 or 2 defines a
curve C homeomorphic to P1 and, thus, has no homology H1

(
P1,Z

)
. There-

fore, there are no vanishing cycles.

5.7. Theorem (Fundamental theorem of Picard-Lefschetz theory). Let f : X →
P1 be a Lefschetz fibration for X a projective complex manifold of complex di-
mension n. Then for each loop γi around the critical value f (pi), there corre-
sponds a vanishing cycle δi ∈ Hn−1(Xρ). Moreover, the monodromy action of f
can be written explicitly in terms of the generators γi as

(γi)∗(c)= c+ (−1)
n(n+1)

2 〈c,δi〉δi,

where the bracket 〈·, ·〉 is the Kronecker pairing. Moreover, the monodromy
action on Hk(Xρ) is trivial for k 6= n−1.

5.8. Theorem (Hard Lefschetz Theorem). With IXρ
:= {

c ∈ Hn−1(Xρ)
∣∣ γi(c)= c ∀i

}
and VXρ

the set of vanishing cycles, we have

Hn−1(Xρ)= IXρ
⊕VXρ

.

6. FLOER COHOMOLOGY

Floer cohomology was originally defined by Floer to prove the Arnold Con-
jecture. One form of this conjecture is the content of Theorem 6.2 Item 1.
Floer homology is defined analogously to Morse homology, the details of which
can be found in [Sal99, Section 1.3].

For Morse homology, we start with a compact Riemannian manifold (M, g)
and a Morse function h : M →R (also called a height function). To each critical
point p ∈ crith, we can associate an integer λp, called the index, given by the
dimension of largest negative definite subspace of the Hessian of h. We then
consider the flow of −∇ f . The flow lines must converge to critical points and,
in fact, flow from one critical point of index λ to another of index λ−1. This
allows us to define the Morse chain complex:

CMλ := critλ h
∂λ : CMλ→ CMλ−1

p → ∑
q∈critλ−1 h

n(p, q)q,

where n(p, q) is the number of flow lines connecting p, q, counting with ori-
entation. It can be shown that the homology of this complex is isomorphic to
the singular homology H∗M. This also implies that the Morse homology is
independent of the metric g and the height function h.

Now we give a brief summary of Lagrangian intersection Floer cohomology
as given in [FOOO09]. To define the Floer cohomology HF∗(L0,L1) of M with
respect to two (transversal) Lagrangian submanifolds L0,L1 of M, we take a
slightly different approach to that of Morse homology. Consider the universal
cover P̃ of the space of paths

P := { x : [0,1]→ M | x(i) ∈ L i, i = 0,1 }

joining one Lagrangian to the other. We want to integrate the (symplectic)
area delineated by x in the following way. A homotopy map for x is a function
x̂ : [0,1]× [0,1]→ M such that
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• x̂(i, s) ∈ L i,
• x̂(t,0)= y ∈ L0 ∩L1 for fixed y, and
• x̂(t,1)= x.

Set Hx to be the set of such homotopy maps. Then we can write P̃ as

P̃ = { (x, x̂) | x ∈ P, x̂ ∈ Hx }

and define the action

A : P̃ →R

(x, x̂) 7→
Ï

[0,1]2
x̂∗ω

as the symplectic area between the two Lagrangians delineated by x. The
action A is the analogue of the height function h in Morse homology.

The problem now is that the index of a critical point can be infinite since
we are on an infinite dimensional manifold. To overcome this obstacle, we
instead use the Maslov index and define critλ A to be the set of critical points
with Maslov index λ. We do not wish to enter into the details of the Maslov
index, which can be found in [PT08, Chapter 5.4].

To define the Floer chain complex, we now need the analogue of the flow
lines connecting two critical points. To that end, choose an almost complex
structure J on M. The pseudo-holomorphic strips u : R× [0,1]→ M satisfying
u(R× {0 })⊂ L0, u(R× {1 })⊂ L1 and the system of equations

0= ∂u
∂s

+ J(t,u)
∂u
∂t

p = lim
s→−∞u(s, t)

q = lim
t→∞u(s, t)

are said to connect p and q. We set n(p, q) to be the number pseudo-holomorphic
strips connecting p and q.

Now we have all the tools in place to define the Floer chain complex:

CFµ(L0,L1) := critµ A
∂µ : CFµ(L0,L1)→ CFµ−1(L0,L1)

p → ∑
q∈critµ−1 A

n(p, q)q.

Strictly speaking, for ∂2 = 0 to hold, we require the extra conditions on M
given in the statement of Theorem 6.2.

6.1. DEFINITION (Condition T). Let L0 and L1 be Lagrangian submanifolds.
They are said to satisfy Condition T if one of the following holds:

(1) the images of H1(L0;Z) and H1(L1;Z) in H1(M;Z) are finite.
(2) L0 is homotopic to L1 in M.

As the following theorem shows, the Floer cohomology groups behave well
with respect to the symplectic structure. In particular, Item 2 shows that it
is invariant under Hamiltonian symplectomorphisms.

6.2. Theorem. [Flo88] Let L0 and L1 be Lagrangian submanifolds satisfying
Condition T and such that π2(M,L i) = 0. Then there exists a Z-graded Floer
cohomology group HF∗(L0,L1) with Z2 coefficients satisfying the following:
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(1) If L0 is transversal to L1, then∑
k

rankHFk(L0,L1)≥ |L0 ∩L1|, (9)∑
k

(−1)k rankHFk(L0,L1)= L0 ·L1, (10)

where |L0 ∩L1| is the order of the set L0 ∩L1, and L0 ·L1 is the inter-
section number;

(2) If ϕ : M → M is a Hamiltonian symplectomorphism, then

HF∗(ϕ(L0),ϕ(L1))∼= HF∗(L0,L1);

(3) HF∗(L i,L i)∼= H∗(L i;Z2).

We can define the Floer cohomology with respect to any two Lagrangian
submanifolds simply by deforming one of them by a Hamiltonian flow until
they are transversal. However, care must be taken as to which entry we
deform, as Lemma 6.3 shows.

6.3. Lemma. Let F0 be a fibre of the bundle T∗Sn, F1 := τ(F0) the Dehn twist
of the fibre, and Z the zero section. Then

(1) HFn−1(F0,F1) 6= 0; but
(2) HF∗(F1,F0)= 0.

Proof. As Seidel comments in [Sei04, Lemma 2], the Floer cohomology groups
of a pair of non-compact Lagrangian submanifolds are given by deforming the
first by the Hamiltonian flow of µ(q, p) = ‖p‖ until they are transversal and
then calculating the singular cohomology groups of the intersection.

(Item 1) We must deform F0 along the Hamiltonian flow and find the in-
tersection of this with F1. To that end, fix q ∈Sn. Then we can write

F1 =
{(

cos(2πr′(|p|))q+sin(2πr′(|p|)) p
|p| ,cos(2πr′(|p|))p−sin(2πr′(|p|))|p|q)

)}
,

ϕδF0 =
{(

cos(δ)q+sin(δ)
p
|p| ,cos(δ)p−sin(δ)|p|q

)}
.

These sets intersect if, for a sufficiently small δ, there exist p1, p2 solving the
equations

0= (
cos(2πr′(|p1|))−cos(δ)

)
q+sin(2πr′(|p1|)) p1

|p1|
−sin(δ)

p2

|p2|
(11)

0= (
sin(2πr′(|p1|))|p1|−sin(δ)|p2|

)
q−cos(2πr′(|p1|))p1 +cos(δ)p2 (12)

The orthogonality conditions on q, p1, and p2 allow us to reduce this problem
to that of finding a solution t = |p| with p = p1 = p2 to the equation

0= cos(2πr′(t))−cos(δ). (13)

Differentiating eqs. (6) and (7), we obtain

r′(t)= 0 for t ≥ ε

2
, (14)

r′(t)=−r′(−t)+1 for all t. (15)

It follows that r′(0)= 1
2 and r′

(
ε
2
)= 0, so the intermediate value theorem guar-

antees the existence of some ε
2 > t > 0 such that eq. (13) is satisfied. Choose

any p = p1 = p2 with |p| = t to obtain a solution to eqs. (11) and (12). The set
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of all such possible solutions p with |p| = t is given by the sphere Sn−1
t ⊂ F0

of radius t inside the fibre. Since t = 0 is not a solution to eq. (13), the in-
tersection F1 ∩ϕδF0 has the homotopy type of a disjoint union of (possibly
uncountably many) (n−1)-spheres.

(Item 2) We must deform F1 along the Hamiltonian flow and find the in-
tersection of this with F0. To that end, fix q ∈Sn and set ρ = 2πr′(|p|). Then

(A) The Lagrangian F0, left, with its deformation, right.

(B) The Lagrangian F1, right, with its deformation, left.

(C) The Lagrangian F0 together with the deformation of F1, left, and F1 with the
deformation of F0, right. The intersections are clearly ; and S1, respectively.

FIGURE 1. The Lagrangians F0 := T∗
(0,0,1)S

2 and F1 := τ(F0)
and their deformations with respect to the Hamiltonian flow.

The function r(t) = −
p

t2+ϕ(t)+t
2 was used to define the Dehn

twist (see Lemma 4.1), where ϕ is the bump function only
taking non-zero values ϕ(t)= exp

(
32

t2−32

)
for |t| < 3.
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the points of ϕδF1 are of the form(
cos(δ)

[
cos(ρ)q+sin(ρ)

p
|p|

]
+sin(δ)

[
cos(ρ)p−sin(ρ)|p|q
|cos(ρ)p−sin(ρ)|p|q|

]
,

cos(δ)
[
cos(ρ)p−sin(ρ)|p|q]−sin(δ)|cos(ρ)p−sin(ρ)|p|q|

[
cos(ρ)q+sin(ρ)

p
|p|

])
=

([
cos(δ)cos(ρ)− sin(δ)sin(ρ)|p|

|cos(ρ)p−sin(ρ)|p|q|
]

q

+
[

cos(δ)sin(ρ)
|p| + sin(δ)cos(ρ)

|cos(ρ)p−sin(ρ)|p|q|
]

p ,

−[
cos(δ)sin(ρ)|p|+sin(δ)cos(ρ)|cos(ρ)p−sin(ρ)|p|q|] q

+
[
cos(δ)cos(ρ)− sin(δ)sin(ρ)|cos(ρ)p−sin(ρ)|p|q|

|p|
]

p
)
.

Supposing there exists a solution in ϕδF1 ∩F0, the p-coefficient of the first
component and the q-coefficient of the second must both be zero, again by
using the orthogonality conditions. This implies

0= cos(δ)sin(ρ)
|p| + sin(δ)cos(ρ)

cos(ρ)p−sin(ρ)|p|q ,

0= cos(δ)sin(ρ)|p|+sin(δ)cos(ρ)|cos(ρ)p−sin(ρ)|p|q|,
which we can reduce to

|cos(ρ)|+ |sin(ρ)| = 1.
Since cos2(ρ)+ sin2(ρ) = 1, we have cos(ρ)sin(ρ) = 0. By inspecting the ex-
pression for the points in ϕδF1, we see that this is not possible. Hence,
ϕδF1 ∩F0 =;. �

6.4. Remark. In the proof of Lemma 6.3 Item 1, if we could show that the
set of solutions t to eq. (13) is connected, we would be able to deduce that
HF∗(F0,F1) ∼= H∗ (

Sn−1,C
)
. Figure 1 certainly suggests that this is the case

for n = 2. Indeed, Seidel claims that the solution is unique in the general case
but does not provide a proof.

7. EXAMPLES OF LEFSCHETZ FIBRATIONS

We present two examples of Lefschetz fibrations: one from Lie theory; the
other from mirror symmetry. The former is constructed on the adjoint orbit of
a regular element H0 ∈ sl (3C) using Theorem 7.1. The second is well-known
as the mirror of P1, where the Lefschetz fibration is given by the “superpo-
tential”. Both are functions into C instead of P1.

7.1. Theorem. [GGM] Let g be a complex semi-simple Lie algebra, W its Weyl
group, h a Cartan subalgebra, G a Lie group with Lie algebra g, and denote
the adjoint orbit of an element X ∈ g by O (X ). Then for any H0 ∈ h and H ∈ hR
with H a regular element, the function fH : O (H0)→C defined by

fH (x)= 〈H, x〉 x ∈O (H0)

is a Lefschetz fibration in the following sense.
(1) There are finitely many singularities. This number is given by |W |/|WH0 |.
(2) The singularities are non-degenerate.
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(3) The regular fibres are diffeomorphic.
(4) There exists a symplectic form ω on O (H0), with respect to which the

regular fibres are symplectic submanifolds
(5) The singular fibres contain affine subspaces, which are each symplectic

with respect to ω.

7.2. Example. We write a general element of sl (3,C) as

A =
x1 y1 y2

z1 x2 y3
z2 z3 −(x1 + x2)

 .

Choosing

H0 =
2 0 0

0 −1 0
0 0 −1

 ,

then O (H0) is the set of matrices in sl (3,C) with minimal polynomial p(x) :=
(x−2id)(x+ id). We can also obtain O (H0) as the affine variety in sl (3,C)∼=C8

cut out by the ideal
〈
ai j

∣∣ i, j = 1,2,3
〉
, where the ai j are the polynomial entries

of the matrix p(A)= (A−2id)(A+ id).
Choosing

H =
1 0 0

0 −1 0
0 0 0


yields the Lefschetz fibration fH

fH : O (H0)→C

A 7→ x1 − x2.

Moreover, the Weyl group W acts via conjugation by permutation matrices.
Therefore, fH has 3 singularities: the 3 diagonal matrices with diagonal en-
tries 2,−1,−1. The critical values are 3, 0, and −3.

The regular fibre X1 := f −1
H (1) is cut out as an affine variety in sl (3,C)'C8

by the ideal
I = 〈

x1 − x2 −1,ai j
∣∣ i, j = 1,2,3

〉
.

Projectivising gives us a compactification X1 ∈P8. Let ai j be the homogenisa-
tion of ai j, or, equivalently, the polynomial entries of (A−2t id)(A+ t id). Then
the ideal corresponding to X1 is

J = 〈
x1 − x2 − t,ai j

∣∣ i, j = 1,2,3
〉

.

Using the Macaulay2 algorithms described in appendix A.2 to calculate the
Hodge cohomology groups, we obtain the following Hodge diamond for X1:

1
0 0

0 2 0
0 0 0 0

0 2 0
0 0

1

We can also projectivise the orbit X :=O (H0). For example, with K := 〈
ai j

∣∣ i, j = 1,2,3
〉
,

we can choose the projectivisation X of X cut out by K in P8. Again using the
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Macaulay2 algorithms described in appendix A.2, we obtain the following
Hodge diamond for X :

1
0 0

0 2 0
0 0 0 0

0 0 3 0 0
0 0 0 0

0 2 0
0 0

1

Mirror of P1. Now we turn to our last example and study the variety C∗ with
the potential

W : C∗ →C

z 7→ z+ 1
z

and the symplectic form

ω :=
p
−1

dz∧dz
zz

.

This is known as the mirror of P1 in the sense of Kontsevich’s homological
mirror symmetry conjecture, as is shown in [AKO08]. The interesting part
for us will be the vanishing cycles determined by the potential W .

The critical points of W are { z | 1− z−2 = 0 } = {±1 }. The images of the crit-
ical points are pairwise distinct, with W(1) = 2 = −W(−1). The Hessian is
2z−3, which is never zero, so the critical points are non-degenerate.

The fibres of W are given by

W−1(λ)= { z | z2 −λz+1= 0 } ,

which has 2 points unless z(z−λ)+1 has a double root. So the critical values
are the solutions to λ2 = 4, which we denote by

λ0 = 2
λ1 =−2.

(16)

Furthermore, since the fibres are all finite, the map W must be proper. Thus,
by the Ehresmann fibration theorem, the restriction of W to W−1 (C\{±2 }) is
a locally trivial fibre bundle.

Following the notation of [AKO08], we denote our regular reference fibre
by Σ0 :=W−1(0)= { ι,−ι }, where ι :=p−1. To find the vanishing cycles, we look
for the spheres in Σ0 that contract to a point under parallel transport. Each
of the arcs

γ0(t)= 2t
γ1(t)=−2t,

(17)

has two possible lifts to C∗

γ̃0(t)= t±
√

t2 −1

γ̃1(t)=−t±
√

t2 −1

since γ̃ j(t) ∈ W−1(±2t) must satisfy the equation z2 + (−1) j2tz+1 = 0. Thus,
there are two vanishing cycles, both of which coincide with Σ0 as sets Σ0. We
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distinguish them by their thimbles D0, D1 traced out under parallel trans-
port, γ̃1, γ̃2, as shown in Figure 2.

Re z

Im z

Σ0

W−1(2)W−1(−2)

D0D1

FIGURE 2. The thimbles for W on X .

We must also check that there are no cycles vanishing to infinity. But there
are only two solutions of x2−λx+1= 0 as λ→∞: one near zero and the other
near λ. Thus, there are no more vanishing cycles.

Now consider the Floer chain complex CP∗ (L0,L1). Since they are each
generated by the thimbles, it follows that CF∗(L0,L1) is a free module of
rank 2. Since Σ0 is discrete, the pseudo-holomorphic strips (see Section 6)
must be constant. Hence, the differentials vanish identically.

APPENDIX A. COMPUTATIONS

A.1. Mathematica. We use Mathematica to obtain a concrete visualisation
of a fibre of T∗Sn, it’s generalised Dehn twist, and their deformations under
a Hamiltonian deformation. The general theory is described in Lemma 6.3
and Section 4, and the results are presented in Figure 1.

We fix a point u := (0,0,1) ∈S2.
u = {0, 0, 1};

The flow used in our example is given by the circle action which rotates the
vector q ∈S2 in the direction p ∈ TqS

2 (along the geodesic) by an angle t.
flow = Compile[ (* The definition of the flow *)

{

{t, _Real}, (* Distance along geodesic *)

{q, _Real, 1}, (* Point on the Sphere *)

{p, _Real, 1} (* Point on the cotangent fibre at q *)

},

If[

Norm[p] == 0,

Transpose[ {q, p } ],

RotationMatrix[t, { q, p } ].Transpose[ {q, p }]

]

];
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The algorithm RotationMatrix requires p 6= 0 to be well-defined, in which
case the flow should be the identity map.

The construction of the Dehn twist depends on a function r satisfying

eqs. (6) and (7). Here we use the function r(t) = −
p

t2+B(t)
2 + t

2 , where B is

the bump function only taking non-zero values B(t)= exp
(

32

t2−32

)
for |t| < 3.

b = 1/3;

B[x_] := Piecewise[

{

{Exp[-1/(1 - ((b*x)^2))], Abs[b*x] < 1} ,

{0, Abs[b*x] >= 1}

}

];

R[t_] := -Sqrt[t^2 + B[t]]/2;

r[t_] := R[t] + t/2;

The Dehn twist of the fibre TuS
2 is then the function that rotates u+ p by

the angle 2πr′ (‖p‖) in the direction of p ∈ TuS
2.

dehn = Compile[

{

{p, _Real, 1}

},

flow[ 2*\[Pi]*r'[Norm[p]], u, p ]

];

We specify the points of the fibre F0 := TuS
2 by:

F0 = Flatten[ (* The points on the fibre F_0 *)

Table[

{p1, p2, 1},

{p1, -\[Pi] - 1, \[Pi] + 1, 0.1},

{p2, -\[Pi] - 1, \[Pi] + 1, 0.1}

],

1

];

and the points of the Dehn twist F1 of F0 by:

F1 = Flatten[ (* The Dehn twist of F_0 *)

Table[

Total[

dehn[ {p1, p2, 0} ]

],

{p1, -\[Pi] - 1, \[Pi] + 1, 0.3},

{p2, -\[Pi] - 1, \[Pi] + 1, 0.3}

],

1

];

We fix the parameter t of the deformation ϕt with

def = 0.3;

and specify the points of the deformation DefF0 of F0 by:
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DefF0 = Flatten[ (* The deformation of F_0 *)

Table[

Total[

flow[ def, u, {p1, p2, 0} ]

],

{p1, -\[Pi] - 1, \[Pi] + 1, 0.1},

{p2, -\[Pi] - 1, \[Pi] + 1, 0.1}

],

1

];

and also the points of the deformation DefF1 of F1 by:
DefF1 = Flatten[ (* The deformation of F_1 *)

Table[

Total[

flow[

def,

dehn[ {p1, p2, 0} ][[1]],

dehn[ {p1, p2, 0} ][[2]]

]

],

{p1, -\[Pi] - 1, \[Pi] + 1, 0.1},

{p2, -\[Pi] - 1, \[Pi] + 1, 0.1}

],

1

];

Plotting these points with
ListPlot3D[

{F1, DefF0},

MaxPlotPoints -> 30,

PlotRange -> All,

Mesh -> 8,

BoxRatios -> Automatic,

PlotStyle -> {

Directive[Opacity[0.7], Yellow],

Directive[Opacity[0.7], Blue]

},

Boxed -> False,

Axes -> False

]

ListPlot3D[

{DefF1, F0},

MaxPlotPoints -> 30,

PlotRange -> All,

Mesh -> 8,

BoxRatios -> Automatic,

PlotStyle -> {

Directive[Opacity[0.7], Yellow],
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Directive[Opacity[0.7], Blue]

},

Boxed -> False,

Axes -> False]

then gives the diagrams of Figure 1.

A.2. Macaulay 2. We use Macaulay to calculate the Hodge diamonds of the
projectivisations of the regular fibre and of the orbit from Section 7. We must
first define our base field k and ring of polynomials R. Note that the prime
number 32749 is the largest prime that Macaulay2 can work with.
i1 : k = ZZ/32749;

i2 : R = k[x_1, x_2, y_1..y_3, z_1..z_3, t];

The variable t will be used for projectivisation. A general element A ∈ sl (3,C)
has the form
i3 : A = matrix{

{x_1, y_1, y_2},

{z_1, x_2, y_3},

{z_2, z_3, -x_1 - x_2}

};

3 3

o3 : Matrix R <--- R

and we will also make use of the identity matrix
i4 : Id = id_(k^3);

3 3

o4 : Matrix k <--- k

In our example, the adjoint orbit O (H0) consists of all the matrices with the
minimal polynomial (X +id)(X −2∗id), so we are interested in the variety cut
out by the equation minPoly:
i6 : minPoly = (A + Id)*(A - 2*Id);

3 3

o6 : Matrix R <--- R

i7 : I = ideal minPoly;

o7 : Ideal of R

To obtain a projectivisation of X , we first homogenize I:
i8 : Iproj = homogenize(I,t);

o8 : Ideal of R

i9 : Xproj = Proj(R/Iproj);

One checks with the command dim Xproj that dim X = 4. To check that X is
non-singular, we use:
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i10 : codim singularLocus Iproj

o10 = 9

Since the codimension of the singularities is 9, our projective variety X must
be non-singular. Now we calculate hi, j for (i, j)= (0,0), (1,0), (2,0), (3,0), (4,0),
(1,1), (2,1), (3,1), and (2,2) with the commands:

i11 : hh^(0,0) Xproj

o11 = 1

i12 : hh^(1,0) Xproj

o12 = 0

i13 : hh^(2,0) Xproj

o13 = 0

i14 : hh^(3,0) Xproj

o14 = 0

i15 : hh^(4,0) Xproj

o15 = 0

i16 : hh^(1,1) Xproj

o16 = 2

i17 : hh^(2,1) Xproj

o17 = 0

i18 : hh^(3,1) Xproj

o18 = 0

i19 : hh^(2,2) Xproj

o19 = 3

Since X is non-singular, the other entries of the Hodge diamond are given by
the classical symmetries.

To define the regular and critical fibres, we will also need the potential,
which in our case is given by:

i20 : potential = x_1 - x_2;
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Since 1 is a regular value, we define the regular fibre X1 as the variety in
sl(3,C)∼=C8 corresponding to the ideal J:
i21 : J = ideal(minPoly) + ideal(potential-1);

o21 : Ideal of R

We then homogenise J to obtain a projectivisation X1 of the regular fibre X1:
i22 : Jproj = homogenize(J,t);

o22 : Ideal of R

i23 : X1proj = Proj(R/Jproj);

One checks with the command dim X1proj that dim X1 = 3. We use the com-
mand
i24 : codim singularLocus Jproj

o24 = 9

to test for singularity. Since this codimension is 9, we see that X1 is indeed
non-singular. Now we calculate hi, j for (i, j) = (0,0), (1,0), (2,0), (3,0), (2,1),
and (3,1) with the commands:
i25 : hh^(0,0) X1proj

o25 = 1

i26 : hh^(1,0) X1proj

o26 = 0

i27 : hh^(2,0) X1proj

o27 = 0

i28 : hh^(3,0) X1proj

o28 = 0

i29 : hh^(1,1) X1proj

o29 = 2

i30 : hh^(2,1) X1proj

o30 = 0

Since X1 is non-singular, the other entries of the Hodge diamond are obtained
via the classical symmetries.
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