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Abstract

We give various realizations of the adjoint orbits of a semisimple Lie
group and describe their symplectic geometry. We then use these realiza-
tions to identify a family of Lagrangean submanifolds of the orbits.
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1 Introduction

Let G be a noncompact (real or complex) semisimple Lie group with Lie
algebra g. The purpose of this paper is to describe various realizations of
the homogeneous spaces G/ZH with ZH the centralizer in G of an element
H belonging to a Cartan subalgebra of g. We then use these descriptions
to study the symplectic geometry of adjoint orbits and to identify a family
of Lagrangian submanifolds.

Our motivation to study these homogeneous spaces is the construc-
tion of Lefschetz fibrations in [5]. The full description of these fibrations
requires a further understanding of the symplectic geometry (or rather
geometries) of G/ZH , in particular those properties related to the de-
scription of the Fukaya category of the Lagrangean vanishing cycles. In
this paper we get some of these properties that have independent interest.

To be more specific let a be a Cartan–Chevalley algebra of g, that is,
the Lie algebra of the A component of an Iwasawa decomposition G =
KAN . We select a Weyl chamber a+ ⊂ a and pick H0 ∈ cla+. The adjoint
orbit Ad (G)H0 identifies with the homogeneous space G/ZH0 . Also the
subadjoint orbit Ad (K)H0 identifies with a flag manifold FH0 = G/PH0

where PH0 is the parabolic subgroup defined by H0, which contains ZH0 .
In this paper we get other realizations of G/ZH0 . First we prove

that G/ZH0 has the structure of a vector bundle over FH0 isomorphic
to the cotangent bundle T ∗FH0 . This fact was proved before by Azad-
Van den Ban-Biswas [2] using a different approach. Here we exploit more
decisively the associated vector bundle construction obtained by PH0 -
representations by viewing G→ FH0 = G/PH0 as a PH0 -principal bundle
(see Subsection 2.1).

The isomorphism Ad (G)H0 ≈ T ∗FH0 provides the adjoint orbit with
two different actions, namely the natural transitive action on Ad (G)H0

and the linear action on T ∗FH0 obtained by lifting the action of G on
FH0 . The later action is not transitive since the zero section is invariant.
Thus one is asked to build a transitive action on the cotangent bundle
T ∗FH0 different from the linear action. We do so by constructing a Lie
algebra θ (g) of Hamiltonian vector fields (with respect to the canonical
symplectic form Ω of T ∗FΘ) which is isomorphic to g. The elements of
θ (g) are complete vector fields and hence the infinitesimal action given
by θ (g) integrates to an action of a Lie group, by a classical theorem
of Palais [8]. This action is transitive and Hamiltonian by construction.
The isotropy subgroup of the transitive action is ZH0 and thus T ∗FH0 gets
identified with G/ZH0 . It turns out that the moment map µ : T ∗FH0 → g
of the Hamiltonian action takes values in Ad (G)H0 and is the inverse of
the previously defined map Ad (G)H0 → T ∗FH0 .

In another realization of G/ZH0 , it is compactified to an algebraic
projective variety, namely the product FH0 × FH∗

0
where FH∗

0
is the flag

manifold dual to FH0 (see Section 3). This is obtained by the diagonal
action g (x, y) = (gx, gy) of G on FH0 × FH∗

0
which has just one open

and dense orbit whose isotropy group is ZH0 = ZH∗
0

and hence realizes
G/ZH0 . The embedding G/ZH0 → FH0 × FH∗

0
induces several geometric

structures on G/ZH0 inherited from those of FH0×FH∗
0
. The point is that

FH0 × FH∗
0

is a flag manifold of G × G and hence admits Riemmannian
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metrics (Hermitian in the complex case) invariant by the compact group
K ×K. These metrics on FH0 × FH∗

0
induce new metrics on G/ZH0 , as

well as new symplectic structures in the complex case.
The embedding G/ZH0 → FH0 × FH∗

0
combined with representations

of g yields realizations of G/ZH0 as orbits on V ⊗ V ∗ where V is the
space of an irreducible representation of g with highest defined by H0 (see
Section 4).

The last two realizations of G/ZH0 are used in Sections 5 and 6 to
build a class of Lagrangean submanifolds in G/ZH0 with respect to the
symplectic structures inherited from the embedding G/ZH0 → FH0×FH∗

0
.

2 Adjoint orbits and cotangent bundles
of flags

Let g be a noncompact semisimple Lie algebra (real or complex) and let
G be a connected Lie group with finite centre and Lie algebra g (for
example G may be Aut0 (g), the component of the identity of the group
of automorphisms).

Usual notation:

1. The Cartan decomposition: g = k ⊕ s, with global decomposition
G = KS.

2. Iwasawa decomposition: g = k ⊕ a ⊕ n, with global decomposition
G = KAN .

3. Π is a set of roots of a, with a choice of a set of positive roots Π+

and simple roots Σ ⊂ Π+ such that n+ =
∑
α>0 gα and gα is the

root space of the root α. The corresponding Weyl chamber is a+.

4. A subset Θ ⊂ Σ defines a parabolic subalgebra pΘ with parabolic
subgroup PΘ and a flag FΘ = G/PΘ. The flag is also FΘ = K/KΘ,
where KΘ = K ∩ PΘ. The Lie algebra of KΘ is denoted kΘ.

5. HΘ ∈ cla+ is characteristic for Θ ⊂ Σ if Θ = {α ∈ Σ : α (HΘ) =
0}. Then, pΘ =

⊕
λ≥0 gλ where λ runs through the nonnegative

eigenvalues of ad (HΘ).

Conversely, starting with H0 ∈ cla+ we define ΘH0 = {α ∈ Σ :
α (H0) = 0} and in the several objects requiring a subscript Θ we
use H0 instead of ΘH0 . For instance, FH0 = FΘH0

, etc.

6. bΘ = 1 ·KΘ = 1 · PΘ denotes the origin of the flag FΘ = K/KΘ =
G/PΘ.

7. We write
n+

Θ =
∑

α(HΘ)>0

gα n−Θ =
∑

α(HΘ)<0

gα

so that g = n−Θ ⊕ zΘ ⊕ n+
Θ, where zΘ is the centralizer of HΘ in g.

8. ZΘ = {g ∈ G : Ad (g)HΘ = HΘ} is the centralizer in G of the
characteristic element HΘ. Its Lie algebra is zΘ. Moreover, KΘ is
the centralizer of HΘ in K:

KΘ = ZK (HΘ) = ZΘ ∩K = {k ∈ K : Ad (k)HΘ = HΘ}.
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Theorem 2.1. The adjoint orbit O (HΘ) = Ad (G) ·HΘ ≈ G/ZΘ of the
characteristic element HΘ is a C∞ vector bundle over FΘ isomorphic to
the cotangent bundle T ∗FΘ. Moreover, we can write down a diffeomor-
phism ι : Ad (G) ·HΘ → T ∗FΘ such that

1. ι is equivariant with respect to the actions of K, that is, for all
k ∈ K,

ι ◦Ad (k) = k̃ ◦ ι

where k̃ is the lifting to T ∗FΘ (via the differential) of the action of
k on FΘ.

2. The pullback of the canonical symplectic form on T ∗FΘ by ι is the
(real) Kirillov–Kostant–Souriaux form on the orbit.

The diffeomorphism ι : O (HΘ) → T ∗FΘ (see 2.1) will be defined in
two steps, first O (HΘ) is proved to be diffeomorphic to a vector bundle
V → K/KΘ associated to the principal bundle K → K/KΘ, built from
a representation of KΘ, then V → K/KΘ is proved to be isomorphic to
T ∗FΘ.

Remark 2.2. The equivariance of item (1) above holds only for the action
of K. However, there exists also an action of G on the vector bundle,
obtained via the diffeomorphism with O (HΘ). Unlike the action of K,
this action is nonlinear since the linear action is not transitive.

The projection π : O (HΘ)→ FΘ is obtained via the action of G. Given
the homogeneous spaces O (HΘ) = G/ZΘ and FΘ = G/PΘ, the centraliser
ZΘ is contained in PΘ. We obtain a canonical fibration gZΘ 7→ gPΘ with
fibre PΘ/ZΘ. On one hand, in terms of the adjoint action the fibre is
Ad (PΘ) ·HΘ, whereas on the other hand it is the affine subspace HΘ +n+

Θ,
where n+

Θ is the sum of the eigenspaces of ad (HΘ) associated to eigenvalues
> 0, that is,

n+
Θ =

∑
gα

with the sum running over the positive roots α outside 〈Θ〉, that is, with
α (HΘ) > 0. Indeed, if g ∈ PΘ then Ad (g)HΘ = HΘ + X with X ∈ n+

Θ.
Moreover if NΘ = exp nΘ then the map g ∈ NΘ 7→ Ad (g)HΘ −HΘ ∈ nΘ

is a diffeomorphism.

Example 2.3. The example of sl (n) – R or C – is enlightening: PΘ is
the group of matrices that are block upper triangular. The diagonal part
(in blocks) is ZΘ, whereas n+

Θ is the upper triangular part above the blocks.
HΘ is a diagonal matrix that has one scalar matrix in each block. Thus,
conjugation Ad (g)HΘ = gHΘg

−1 keeps HΘ inside the blocks and adds
an upper triangular part above the blocks, that is, gHΘg

−1 = HΘ +X for
some X ∈ n+

Θ.

The fibre of π : O (HΘ) → FΘ is a vector space. This alone does not
guaranty the structure of a vector bundle. Nevertheless, the structure
of vector bundle can be obtained as a bundle associated to the principal
bundle K → K/KΘ with structure group KΘ.
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2.1 O (HΘ)→ FΘ is a vector bundle

The adjoint representation of KΘ on g leaves invariant the subspace n+
Θ

and consequently Ad (k) takes eigenspaces of ad (HΘ) to eigenspaces. It
follows that the restriction of Ad defines a representation ρ of KΘ on
n+

Θ. This allows us to define the vector bundle K ×ρ n+
Θ associated to

the principal bundle K → K/KΘ. To define a diffeomorphism between
O (HΘ) and K ×ρ n+

Θ recall that O (HΘ) =
⋃
k∈K Ad (k)

(
HΘ + n+

Θ

)
.

Proposition 2.4. The map γ : O (HΘ)→ K ×ρ n+
Θ defined by

Y = Ad (k) (HΘ +X) ∈ O (HΘ) 7→ k ·X ∈ K ×ρ n+
Θ

is a diffeomorphism satisfying

1. γ is equivariant with respect to the actions of K.

2. γ maps fibers onto fibers.

3. γ maps the orbit Ad (K)HΘ onto the zero section of K ×ρ n+
Θ.

Proof. To see that γ is well defined: if Ad (k) (HΘ +X) = Ad (k1) (HΘ +X1)
then Ad (u) (HΘ +X) = HΘ + X1 where u = k−1

1 k. By equivariance, it
then follows that

u · bΘ = u · π (HΘ +X)

= π (Ad (u) (HΘ +X))

= π (HΘ +X1)

= bΘ.

Consequently u ∈ KΘ, therefore Ad (u) (HΘ +X) = HΘ + Ad (u)X =
HΘ +X1 with X1 = Ad (u)X. Hence,

k1 ·X1 = ku−1 · ρ (u)X = k ·X

showing that γ is well defined. Surjective follows because of k · X =
γ (Ad (k) (HΘ +X)). For injectivity, since k1 ·X1 = k ·X implies k1 = ku
and X1 = Ad

(
u−1

)
X, u ∈ KΘ. Hence,

Ad (k1) (HΘ +X1) = Ad (k) (Ad (u)HΘ + Ad (u)X1)

= Ad (k) (HΘ +X) .

Now, the fibre of O (HΘ) over k · bΘ is Ad (k)
(
HΘ + n+

Θ

)
, which is

taken by γ to elements of the type k ·X, that are in the fibre over k · bΘ
of K ×ρ n+

Θ. Also, γ (Ad (k) (HΘ)) = k · 0, which is in the zero section of
K ×ρ n+

Θ. Equivariance holds because

γ ◦Ad (u) (Ad (k) (HΘ +X)) = γ (Ad (uk) (HΘ +X)) = uk ·X

and the last term is the left action of u ∈ K on the vector bundle. Finally,
diffeomorphism follows from the manifold constructions of O (HΘ) (as a
homogeneous space) and K ×ρ n+

Θ (as an associated bundle).

From the diffeomorphism γ we endow O (HΘ) with the structure of a
vector bundle coming from K ×ρ n+

Θ. Its fibers are the affine subspaces
Ad (k)

(
HΘ + n+

Θ

)
.
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2.2 Isomorphism with T ∗FΘ

Let L be a Lie group, M a closed subgroup, and ι : M → Gl (Tx0 (L/M))
the isotropy representation of M on the tangent space of L/M at x0.
The tangent bundle T (L/M) is isomorphic to the vector bundle L ×ι
Tx0 (L/M), associated to the principal bundle L → L/M via the rep-
resentation ι. Similarly, if ι∗ is the dual representation, then T ∗ (L/M)
is isomorphic to the vector bundle L ×ι∗ (Tx0 (L/M))∗. Observe that if
Q×ρ1 V and Q×ρ2 W are vector bundles associated to the principal bun-
dle Q → X, via equivalent representations ρ1 and ρ2 then Q ×ρ1 V is
isomorphic to Q×ρ2 W .

The tangent space TbΘFΘ can be identified with n−Θ =
∑
α(HΘ)<0 gα,

and the isotropy representation becomes the restriction of the adjoint
representation. The subspace n+

Θ is isomorphic to the dual
(
n−Θ
)∗

of n−Θ
via the Cartan–Killing form 〈·, ·〉 of g. Thus, the map

X ∈ n+
Θ 7→ 〈X, ·〉 ∈

(
n−Θ
)∗

is an isomorphism.
Therefore, T ∗FΘ = T ∗ (K/KΘ) is isomorphic to K×ρn+

Θ, which in turn
is diffeomorphic to the adjoint orbit O (HΘ). Both diffeomorphisms per-
mute the action of K. This finishes the proof of the first part of Theorem
2.1, as well as of item (1). Thus, the diffeomorphism ι : O (HΘ)→ T ∗FΘ

is obtained by composing γ : O (HΘ) → K ×ρ n+
Θ with the vector bundle

isomorphism between K ×ρ n+
Θ and T ∗FΘ. It is explicitly given by

ι : Ad (k) (HΘ +X) ∈ O (HΘ) 7→ 〈Ad (k)X, ·〉 ∈ T ∗kbΘFΘ (2.1)

where X ∈ n+
Θ and TkbΘFΘ is identified with Ad (k) n−Θ.

Item (2) of Theorem 2.1 will be a consequence of Proposition 2.15
below.

2.3 The action of G on T ∗FΘ

The diffeomorphism ι : O (HΘ)→ T ∗FΘ induces an action of G on T ∗FΘ

by gα = ι ◦ Ad (g) ◦ ι−1 (α), g ∈ G, α ∈ T ∗FΘ. The action of K is linear
since it is given by the lifting of the linear action on FΘ. However, the
action of G is not linear because the linear action on T ∗FΘ is not transitive
(the zero section is invariant). It is therefore natural to ask how does the
action of G behave in terms of the geometry of T ∗FΘ. The description of
this action will be made via an infinitesimal action o the Lie algebra g of
G, that is, through a homomorphism θ : g → Γ (T ∗FΘ), which associates
to each element of the Lie algebra g a Hamiltonian vector field on T ∗FΘ.

Let Ω be the canonical symplectic form on T ∗FΘ. Given a vector field
X on FΘ denote by X# the lifting of X to T ∗FΘ. The flow of X# is linear
and is defined by α ∈ T ∗xFΘ 7→ α ◦ (dφ−t)φt(x) where φt is the flow of X.
The lifting satisfies:

1. π∗X
# = X, where π : T ∗FΘ 7→ FΘ is the projection.

2. X# is the Hamiltonian vector field with respect to Ω for the function
hX (ξ) = ξ (X (x)), ξ ∈ T ∗xFΘ.
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3. If X and Y are vector fields, then [X,Y ]# = [X#, Y #], that is,
X 7→ X# is a homomorphism of Lie algebras.

Now, for Y ∈ g we denote the vector field on FΘ whose flow is exp tY
by Ỹ or simply by Y if there is no confusion.

Since the action of K in T ∗FΘ is linear, it follows that the vector field
induced by A ∈ k on T ∗FΘ is X#, that is, θ (X) = X# if X ∈ k. Using
the Cartan decomposition g = k ⊕ s, it remains to describe θ (X) when
X ∈ s. This is done modifying the vector field X# by a vertical one so
that the new vector field still projects on X.

The following lemma is well known. We include it here for the sake of
completeness.

Lemma 2.5. Let M be a manifold and f : M → R. Define F : T ∗M → R
by F = f ◦π (π : T ∗M →M is the projection). Let VF be the Hamiltonian
vector field of F with respect to Ω. Then, VF is vertical (π∗VF = 0), and
VF is the constant parallel vector field whose restriction to a fiber T ∗xM is
−dfx ∈ T ∗xM .

Proof. A straightforward way to see this is to use local coordinates q, p of
M and the fibre, respectively. Then, the Hamiltonian vector field is

VF =
∑
i

∂F

∂pi

∂

∂qi
− ∂F

∂qi

∂

∂pi
.

Since the function F does not depend on p, only the second term remains,
showing that the vector field is vertical. If x = (q1, . . . , qn) ∈ M is fixed
then the second term becomes∑

i

−∂F
∂qi

∂

∂pi
= −dfx

since ∂F/∂qi = ∂f/∂qi.

We return to FΘ which coincides with the adjoint orbit Ad (K)·HΘ ⊂ s.
Given X ∈ s, we can define the height function

fX (x) = 〈x,X〉

where 〈·, ·〉 is the Cartan–Killing form, which is an inner product when
restricted to s.

Now a choose a K-invariant Riemannian metric (·, ·)B on FΘ. The
most convenient for our purposes is the so called Borel metric which has
the property that for any X ∈ s the gradient of fX is exactly the vector
field X induced by X (see Duistermat–Kolk–Varadarajan [3]).

For X ∈ s set FX = fX ◦ π and denote by VX its Hamiltonian vector
field on T ∗FΘ. By the lemma 2.5 VX is vertical.

The following lemma will be used to evaluate the symplectic form on
the several Hamiltonian vector fields defined above.

Lemma 2.6. We have the following directional derivatives:

1. If A ∈ k and X ∈ s then A#FX = F[A,X].

2. If X,Y ∈ s then X#FY = Y #FX .
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3. If X,Y ∈ s then VXFY = 0.

Proof. Straightforward calculation.

Remark 2.7. In the computation of the partial derivative of item (1)
above we used the fact that the Lie algebra of G is formed by right invariant
fields. For the bracket [·, ·] in g formed by the right invariant vector fields
the following equality holds Ad

(
eA
)

= e−ad(A). The reason to use right
invariant vector fields is so that we can project onto homogeneous spaces.

We deduce the Lie brackets between the Hamiltonian vector fields.

Corollary 2.8. We have the following Lie brackets:

1. If A ∈ k and X ∈ s then [A#, VX ] = V[A,X].

2. If X,Y ∈ s then [X#, VY ] = [Y #, VX ].

3. If X,Y ∈ s then [VX , VY ] = 0.

Corollary 2.9. The map θ defined on g and taking values on vector
fields of T ∗FΘ defined by θ (A) = A# if A ∈ k and θ (X) = X# + VX is a
homomorphism of Lie algebras.

Proof. This follows directly from the brackets in Cor. 2.8.

In other words, θ is an infinitesimal action of g on T ∗FΘ. By a classical
result of Palais this action is integrated to an action of a connected Lie
group G, whose Lie algebra is g, provided the vector fields are complete.

Lemma 2.10. The vector fields θ (Z), Z ∈ g are complete.

Proof. Take Z = A + X with A ∈ k and X ∈ s so that θ (Z) = A# +
X# + VX = (A+X)# + VX . Suppose by contradiction that there exists
a maximal trajectory z (t) of Z defined in a proper interval (a, b) ⊂ R,
with e.g. b < ∞. This implies that limt→b z (t) = ∞. Let x (t) be the
projection of z (t) onto FΘ. Then x (t) is a trajectory of the vector field

Ã+X on FΘ induced by A+X. Since Ã+X is complete (by compactness
of FΘ) there exists limt→b x (t) = x (b).

In a local trivialization T ∗FΘ ≈ U × Rn around x (b) we have z (t) =
(x (t) , y (t)). The second component y (t) satisfies a linear equation

ẏ = A (t) y + c (t)

where A (t) is the derivative at x (t) of the vector field Ã+X and c (t) =
VX (x (t)). The solution of this linear equation is defined in a neighbor-
hood of b, contradicting the fact that z (t)→∞ as t→ b.

As a consequence we obtain the following result.

Proposition 2.11. The infinitesimal action θ integrates to an action
a : G × T ∗FΘ → T ∗FΘ of a connected Lie group G with Lie algebra g.
This action a (g, x) = g · x satisfies:

1. θ (Y ) (x) = d
dt |t=0

a
(
etY , x

)
for all Y ∈ g.

2. The action is Hamiltonian since the vector fields θ (Y ), Y ∈ g are
Hamiltonian vector fields.

8



3. The projection π : T ∗FΘ → FΘ is equivariant with respect to this new
action and the action of G on FΘ.

4. The action a is transitive.

Proof. The first two items are due to the construction of θ and a. As to
equivariance it holds because for any Y ∈ g the projection π∗θ (Y ) is the

vector field Ỹ induced by Y via the action on FΘ.
To prove transitivity we observe that the Cartan decomposition g =

k ⊕ s induces the Cartan decomposition G = KS. The group K acts on
T ∗FΘ by linear transformations among the fibres, since θ (A) = A# for
A ∈ k. Since K acts transitively on FΘ, it suffices to verify that G acts
transitively on a single fibre.

Let bΘ ∈ FΘ be the origin of FΘ also seen as the null vector of T ∗bΘFΘ.
Then the orbit G · bΘ on T ∗FΘ is open, because the tangent space to the
orbit

{θ (Z) (bΘ) : Z ∈ g}
coincides with the tangent space TbΘ (T ∗FΘ).

In fact, TbΘ (T ∗FΘ) is the sum of the (horizontal) tangent space
TFΘ with the (vertical) fibre T ∗bΘFΘ. The transitive action of K on
FΘ guaranties that TFΘ = {θ (A) (bΘ) : A ∈ k}. On the other hand,

given X ∈ s there exists A ∈ k such that X̃ (bΘ) = Ã (bΘ). In such

case, X̃ −A (bΘ) = 0, which implies that (X −A)# (bΘ) = VX (bΘ).
The vertical vector VX (bΘ) is the linear functional of TbΘFΘ given by

v 7→
(
X̃ (bΘ) , v

)
B

= (dfX)bΘ (v). These linear functionals generate

T ∗bΘFΘ since X̃ (bΘ), X ∈ s, generates TbΘFΘ. This shows that the vertical
space is contained in the space tangent to the orbit, concluding the proof
that the orbit is open.

Finally, take H ∈ a+. Then, VH (bΘ) = 0 since H̃ (bΘ) = 0. Moreover,
H# is vertical in the fibre over bΘ and restricts to the fibre as a linear
vector field. Since H was chosen in the positive chamber a+, such linear
vector field is given by a linear transformation whose eigenvalues are all
negative. This implies that any trajectory of H# in the fibre intercepts
every neighborhood of the origin. Since G · bΘ contains a neighborhood
of the origin we conclude that G is transitive in the fibre T ∗bΘFΘ, showing
that the action is transitive.

The next step is to identify T ∗FΘ as a homogeneous space of G, via
the transitive action of the previous proposition. First of all we shall find
the isotropy algebra l at bΘ, that is,

l = {Y ∈ g : θ (Y ) (bΘ) = 0}

where the origin of the flag bΘ is seen also the null vector of T ∗bΘFΘ.

Lemma 2.12. The isotropy subalgebra l = {Y ∈ g : θ (Y ) (bΘ) = 0}
coincides with the isotropy subalgebra at HΘ of the adjoint orbit, that is,
l = zΘ.

Proof. Let Y ∈ g with θ (Y ) (bΘ) = 0 and Y = A+X, A ∈ k and X ∈ s.
Then, θ (Y ) = A# + X# + VX and since A# (bΘ) = X# (bΘ) = 0, it
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follows that VX (bΘ) = 0. However, as in the previous proof, VX (bΘ)

is the linear functional v 7→
(
X̃ (bΘ) , v

)
B

. Therefore, X̃ (bΘ) = 0. On

the other hand, θ (Y ) (bΘ) = 0 implies that Ỹ (bΘ) = 0, and consequently

Ã (bΘ) = −X̃ (bΘ) = 0. This shows that A ∈ pΘ∩k ⊂ zΘ and B ∈ pΘ∩s ⊂
zΘ, thus Y ∈ zΘ. Therefore,

{Y ∈ g : θ (Y ) (bΘ) = 0} ⊂ zΘ.

Equality follows from the fact that these algebras has the same dimension,
since they are isotropy algebras of spaces of equal dimension.

The equality of isotropy Lie algebras l = zΘ shows at once the equality
of isotropy subgroups if we know in advance that they are connected, as
happens for instance to complex Lie algebras. The next statement shows
that the isotropy groups indeed coincide.

Proposition 2.13. Let L be the isotropy group of the action a : G ×
T ∗FΘ → T ∗FΘ at bΘ. Then, L = ZΘ.

Proof. By the previous lemma the Lie algebras of these groups coincide,
therefore their connected components of the identity (ZΘ)0 and L0 are
equal. Since L normalizes its Lie algebra, it follows that L normalizes zΘ.
Nevertheless, the normalizer of zΘ is ZΘ. Therefore, L ⊂ ZΘ.

To verify the opposite inclusion, consider the restriction of the action
a to the subgroup K. For A ∈ k, θ (A) = A#. Thus, the action of K on
T ∗FΘ is linear. Therefore the isotropy group K ∩ L coincides with the
isotropy group of the action on FΘ at bΘ, that is, K ∩ L = KΘ. Now, we
know that KΘ intercepts all connected components of ZΘ, see [?, Lemma
1.2.4.5.]. Therefore, the relations KΘ ⊂ L and (ZΘ)0 = L0 imply that
ZΘ ⊂ L.

Remark 2.14. Lemma 2.12 and proposition 2.13 are needed to verify
that the homogeneous space obtained via the infinitesimal action indeed
coincides with the homogeneous space of the adjoint orbit. Although the
manifolds are isomorphic, it is not granted a priori that the group actions
agree.

Remark 2.15. The group G that integrates the infinitesimal action θ
is necessarily the adjoint group Aut0 (g), whose center is trivial. This
happens because the action of G on T ∗FΘ is effective, as G is a subgroup
of diffeomorphisms of T ∗FΘ. An effective action on the adjoint orbit only
happens for the adjoint group, since the centre Z (G) ⊂ ZΘ and if z ∈
Z (G) then Ad (z) = id.

2.4 Moment map on T ∗F
The action a : G× T ∗FΘ → T ∗FΘ defined above is a Hamiltonian action,
since θ (Y ) is a Hamiltonian field for each Y ∈ g. We can then define a
moment map µ : T ∗FΘ → g∗, by µ (ξ) (Y ) = enY (ξ), where enY : T ∗FΘ →
R is the energy function of θ (Y ) e ξ ∈ T ∗FΘ. That is,

• if A ∈ k then µ (ξ) (A) = ξ
(
Ã (x)

)
, x = π (ξ), and
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• if X ∈ s then µ (ξ) (X) = ξ
(
X̃ (x)

)
+ 〈X,x〉, x = π (ξ), where 〈·, ·〉

is Cartan–Killing.

Associated with µ we define a cocycle c : G→ g∗ by

c (g) = µ (g · ξ)−Ad∗µ (ξ) ,

where ξ ∈ T ∗FΘ is arbitrary since the second hand side is constant as a
function of ξ (see [1]). The map c is a cocycle in the sense that

c (gh) = Ad∗ (g) c (h) + c (g) ,

which means that c is a 1-cocycle of the cohomology of the coadjoint
representation of G on g∗.

In the case when g is semisimple the Cartan–Killing form 〈·, ·〉 in-
terchanges the representations: coadjoint Ad∗ and adjoint Ad. With
this we can define a moment map µ : T ∗FΘ → g (same notation) by
〈µ (ξ) , ·〉 = enY (ξ). So the cocycle becomes c (g) = µ (g · ξ)−Ad (g)µ (ξ),
which satisfies c (gh) = Ad (g) c (h) + c (g).

Theorem 2.16. Let µ : T ∗FΘ 7→ g be the moment map of the action
a : G × T ∗FΘ → T ∗FΘ constructed above, and let c : G → g be the corre-
sponding cocycle. Then,

1. c is identically zero, which means that µ : T ∗FΘ → g is equivariant,
that is, µ (g · ξ) = Adµ (ξ).

2. µ is a diffeomorphism between T ∗FΘ and the adjoint orbit Ad (G)HΘ.

3. µ∗ω = Ω, where Ω is the canonical symplectic form of T ∗FΘ and ω
the (real) Kirillov–Kostant–Souriaux form on Ad (G)HΘ.

4. µ : T ∗FΘ → Ad (G)HΘ is the inverse of the map ι : Ad (G)HΘ →
T ∗FΘ of Theorem 2.1 given in (2.1).

Proof. The result is a consequence of the following items:

1. µ (bΘ) = HΘ, where bΘ is the origin of FΘ also regarded as the null

vector in T ∗bΘFΘ. In fact, if A ∈ k then µ (bΘ) (A) = bΘ
(
Ã (bΘ)

)
= 0.

Whereas if X ∈ s then

µ (bΘ) (X) = bΘ
(
X̃ (bΘ)

)
+ 〈X,HΘ〉

= 〈X,HΘ〉.

Therefore, HΘ ∈ g satisfies µ (bΘ) (Y ) = 〈Y,HΘ〉 for all Y ∈ g, which
means that µ (bΘ) = HΘ.

2. If x ∈ FΘ with x = Ad (k)HΘ, k ∈ K, then µ (x) = Ad (k)HΘ. This
follows by the same argument in the previous item, where we regard

x as the zero vector in TxFΘ and thus obtain x
(
X̃ (x)

)
= 0 for any

X ∈ g.

3. c (k) = 0 if k ∈ K as follows by definition c (k) = µ (k · bΘ) −
Ad (k)µ (bΘ) and the previous items.
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4. c (h) = 0 if h ∈ A. In fact, Ad (h)µ (bΘ) = Ad (h)HΘ = HΘ. On
the other hand, if H ∈ a then θ (H) (bΘ) = 0 since H# (bΘ) = 0

and VH (bΘ) = 0, since (dfH)bΘ (·) =
(
H̃ (bΘ) , ·

)
= 0. This im-

plies that bΘ is a fixed point by the action of A on T ∗FΘ. There-
fore, µ (h · bΘ) = µ (bΘ) = HΘ, concluding that c (h) = µ (h · bΘ) −
Ad (h)µ (bΘ) = 0.

5. c ≡ 0, that is, µ is equivariant: µ (g · ξ) = Adµ (ξ). This follows from
the polar decomposition G = K

(
clA+

)
K and two applications of

the cocycle property. In fact, if g = uhv ∈ K
(
clA+

)
K then

c (g) = c (uhv) = Ad (uh) c (v) + c (uh)

= Ad (u) c (h) + c (u)

= 0.

6. Since µ is equivariant and µ (bΘ) = HΘ, its image is contained in
the adjoint orbit Ad (G)HΘ. The diffeomorphism property is due to
equivariance, transitivity of G on the spaces and the fact that the
isotropy subgroups on both spaces coincide. The pullback of item
(3) is a standard fact about moment maps of Hamiltonian actions.

7. To see the inverse of µ take ξ = ι (HΘ + Z) ∈ T ∗bΘFΘ. If A ∈ k and
x ∈ s then

〈µ (ξ) , A〉 = ξ
(
Ã (bΘ)

)
〈µ (ξ) , X〉 = ξ

(
X̃ (bΘ)

)
+ fX (bΘ) .

Write A = A−+A0+A+ ∈ g = n−Θ⊕zΘ⊕n
+
Θ. Then Ã (bΘ) = Ã− (bΘ)

so ξ
(
Ã (bΘ)

)
= 〈Z,A−〉. Since n+

Θ is Cartan–Killing orthogonal to

zΘ ⊕ n+
Θ we have ξ

(
Ã (bΘ)

)
= 〈Z,A−〉 = 〈Z,A〉, that is,

〈µ (ξ) , A〉 = 〈Z,A〉 = 〈HΘ + Z,A〉

because 〈HΘ, A〉 = 0. Similarly ξ
(
X̃ (bΘ)

)
= 〈Z,X〉 and since

fX (bΘ) = 〈HΘ, X〉 we have 〈µ (ξ) , X〉 = 〈HΘ + Z,X〉. Hence
µ (ι (HΘ + Z)) = HΘ + Z, showing that µ and ι are inverse to each
other.

Remark 2.17. (Other actions.) Besides the action defined above, there
are other infinitesimal actions g on T ∗FΘ that play the same role:

1. Take θ− (A) = A# if A ∈ k and θ− (X) = X# − VX if X ∈ s.
Then, θ− is still and infinitesimal representation, which gives rise
to another action of G.

2. If ((·, ·)) is a K-invariant Riemannian metric on FΘ such that each

X̃, X ∈ s, is a gradient of the function f̂X then the same game can
be played with the Hamiltonian vector field of F̂X = f̂ ◦π in place of
VX .
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3 Embedding of adjoint orbits into prod-
ucts

We recall here a known realization of the homogeneous space G/ZΘ as an
orbit in a product of flag manifolds (see [11], Section 3, for the details).

Let w0 be the principal involution of the Weyl group W, that is, the
element of highest length as a product of simple roots. Then −w0a

+ = a+

and −w0Σ = Σ, so that −w0 is a symmetry of the Dynkin diagram of Σ.
For a subset Θ ⊂ Σ we put Θ∗ = −w0Θ and refer to FΘ∗ as the flag
manifold dual to FΘ. Clearly if HΘ is a characteristic element for Θ then
−w0HΘ is characteristic for Θ∗. (Except for the simple Lie algebras with
diagrams Al, Dl and E6 all the flag manifolds are self-dual. In Al = sl (n),
n = l + 1, we have for instance, the dual to the Grassmannian Grk (n) is
Grn−k (n).)

Next we check that the the diagonal action of G on the product FΘ ×
FΘ∗ as (g, (x, y)) 7→ (gx, gy), g ∈ G, x, y ∈ F has just one open and dense
orbit which is G/ZΘ.

Let x0 be the origin of FΘ. Since G acts transitively on FH , all the
G-orbits of the diagonal action have the form G · (x0, y), with y ∈ FΘ∗ .
Thus, the G-orbits are in bijection with the orbits of the action of PΘ∗ on
FΘ∗ , which is known to be the orbits through wy0, w ∈ W, where y0 is
the origin of FΘ∗ . Hence the G-orbits are G · (x0, wy0), w ∈ W.

Now let w0 be the principal involution of W.

Proposition 3.1. The orbit G · (x0, w̃0y0) is open and dense in FΘ×FΘ∗

and identifies to G/ZH . (Here and elsewhere w̃ stands for a representative
in K of w ∈ W).

Proof. The isotropy subgroup at the point (x0, w̃0y0) is the intersection
of the isotropy subgroups at x0 and w0y0. The first one is the parabolic
subgroup P−H associated to w̃0H

∗ = −H, and the second one is PH ,
where H is a characteristic element of Θ. Since ZH = PH ∩ P−H the
identification follows. Now the Lie algebra zH = pH ∩ p−H of PH ∩ P−H
is complemented in g by n+

H ∩ n+
−H , with n+

−H =
∑
α(H)<0 gα. Hence, the

dimension of G · (x0, w̃0y0) is the same as the dimension of FΘ × FΘ∗ , so
that the orbit is open. An analogous reasoning shows that this is the only
open orbit and hence dense.

In terms of this realization of G/ZΘ as an open orbit, the map G/ZΘ →
FΘ is just the projection onto the first factor. Also, if Θ ⊂ Θ1 the pro-
jection G/ZΘ → G/ZΘ1 is inherited from the projections FΘ → FΘ1 and
FΘ∗ → FΘ∗

1
.

A flag manifold FΘ = G/PΘ is in bijection with the set of parabolic
subalgebras conjugate to pΘ, since PΘ is the normalizer of pΘ. From this
point of view the open orbit G · (x0, w̃0y0) ⊂ FΘ × FΘ∗ is characterized
by transversality: Two parabolic subalgebras p1 ∈ FΘ and p2 ∈ FΘ∗ are
transversal if g = p1 + p2, or equivalently if n (p1) ∩ p2 = p1 ∩ n (p2) =
{0}, where n (·) stands for the nilradical (see [10]). Then the open orbit
G · (x0, w̃0y0) is the set of pairs of transversal subalgebras. In particular,
the set of subalgebras transversal to the origin x0 ∈ FΘ is the open cell
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N+w̃0y0 with y0 the origin of FΘ∗ . More generally the set of subalgebras
transversal to gx0, g ∈ G, is the open cell gN+w̃0x0.

The fixed points of a split-regular element h ∈ A+ = exp a+ in
a flag manifold FΘ are isolated. The set of fixed points is the orbit
through the origin of NormK (a) and factors down to the Weyl group
W = NormK (a) /CentK (a).

4 Adjoint orbits and representations of g

In this section we give realizations of the coset spaces G/ZΘ based on
representations of g. It will be convenient to assume that g is a complex
algebra, even though the theory works, with some adaptations, for real
algebras. This new description helps to establish a bridge between the
adjoint orbit and the open orbit in the product.

4.1 The adjoint action of G on End(V )

Let h be a Cartan subalgebra of g and denote by hR the real subspace
of h spanned by Hα, α ∈ Π, where α (·) = 〈Hα, ·〉. Fix a Weyl chamber
h+
R and let Σ = {α1, . . . , αl} be the corresponding system of simple roots,

with fundamental weights {µ1, . . . , µl}. If µ = a1µ1 + · · · + alµl with
ai ∈ N, then there exists a unique irreducible representation ρµ of g with
highest weight µ. If H ∈ h+

R then µ (H) is the largest eigenvalue of
ρµ (H). If w0 is the main involution, then w0µ is a lowest weight, that is,
(w0µ) (H) = µ (w0H) is the smallest eigenvalue of ρµ (H) if H ∈ h+

R .
If K ⊂ G is the maximal compact subgroup, then V can be endowed

with a K-invariant Hermitian form (·, ·)µ such that the weight spaces are
pairwise orthogonal. Such a Hermitian form is unique up to scale, because
the representation of K on V is irreducible.

In section 5 we study Lagrangean submanifolds of the adjoint orbits
Ad (G)H0 with H0 ∈ cl

(
h+
R
)
, embedded into products FH0 × FH∗

0
. There

is a freedom of choice to pick the element H0, producing the same flag
FH0 . In what follows we will choose a convenient H0.

Let Θ0 = Θ (H0) = {α ∈ Σ : α (H0) = 0}, that is, H0 is characteristic
for Θ0. Let µ be a highest weight such that, for α ∈ Σ, 〈α∨, µ〉 = 0 if and
only if α ∈ Θ0. (For example, µ = µi1 +· · ·+µis if Σ\Θ0 = {αi1 , . . . , αis}.)
Define Hµ ∈ hR by µ (·) = 〈Hµ ·〉. Then, the centralizers of Hµ and H0

coincide, since Θ0 is the set of simple roots that vanish on H0 as well
as on Hµ. Hence the adjoint orbits Ad (G)Hµ and Ad (G)H0 give rise
to the same homogeneous space G/ZH0 = G/ZHµ and the flags FH0 and
FHµ coincide. From now on we take H0 = Hµ with µ a highest weight,
µ = µi1 + · · ·+ µis.

Let G be the linear connected group with Lie algebra ρµ (g) ≈ g and
consider its action on the projective space P (V ) of the representation
space V = V (µ). It is well known that this choice of µ guaranties that
the projective orbit of G by the subspace of highest weight Vµ ∈ P (V ) is
the flag FHµ = FΘ0 .
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Consider the dual representations ρ∗µ of g and G on V ∗ as ρ∗µ (X) (ε) =
−ε ◦ ρµ (X) and ρ∗µ (g) (ε) = ε ◦ ρµ

(
g−1

)
if ε ∈ V ∗, X ∈ g and g ∈ G.

Choose a basis {v0, . . . , vN} de V adapted to the decomposition in weight
spaces with v0 ∈ Vµ. Denote by {ε0, . . . , εN} the dual basis εi (vj) = δij .
Then ε0 generates a subspace of “lowest ” weight of V ∗, in the sense that

1. ρ∗µ (H) (ε0) = −µ (H) ε0 if H ∈ h, and

2. ρ∗µ (X) (ε0) = 0 if X ∈
∑
α<0 gα, and ρµ (X) takes a weight space

Vν to a sum of spaces of weights smaller than ν.

Therefore, −µ is the lowest weight of V ∗. So, the highest weight is
µ∗ = −w0µ. This means that the projective orbit of the highest weight
(and of ε0) on V ∗ is the dual flag FH∗

µ
.

Example 4.1. If g = sl (n,C) then the fundamental weights are λ1, λ1 +
λ2, . . . ,λ1 + · · ·+ λn−1, where λi is the functional that associates the i-th
eigenvalue of the diagonal matrix H ∈ h. If µ is a fundamental weight
µ = λ1+· · ·+λk then the irreducible representation with highest weight µ is
the representation of g on the k-th exterior power ΛkCn of Cn. The highest
weight space is generated by e1 ∧ · · · ∧ ek (ei are the basis vectors of Cn).
The G-orbit of e1 ∧ · · · ∧ ek is the set of decomposable elements of ΛkCn,
so the projective G-orbit is identified to the Grassmannian Grk (n). The
dual flag of Grk (n) is Grn−k (n) which is the projective orbit on Λn−kCn,
identified to the dual ΛkCn by a choice of volume form on Cn. The lowest
weight space on Λn−kCn is generated by ek+1 ∧ · · · ∧ en.

Keeping the same highest weight µ, consider the tensor product V⊗V ∗.
G gets represented on V ⊗ V ∗ by g · (v ⊗ ε) = ρµ (g) v⊗ ρ∗α (g) ε, which is
isomorphic to the adjoint representation of G on End (V ).

Once again, let v0 and ε0 be generators of the spaces of highest weight
of V and lowest of V ∗, respectively. Our fourth model of the adjoint orbit
is the G-orbit of v0 ⊗ ε0. To prove that this orbit is indeed G/ZH0 we
shall consider the moment map of the representation. Namely, the map
M : V ⊗ V ∗ → g∗ defined by

M (v ⊗ ε) (Z) = ε (ρµ (Z) v) v ∈ V, ε ∈ V ∗, Z ∈ g.

Since g is semisimple, g ≈ g∗ via the Cartan–Killing form 〈·, ·〉 we can
take the moment map M : V ⊗ V ∗ → g given by

〈M (v ⊗ ε) , Z〉 = ε (ρµ (Z) v) v ∈ V, ε ∈ V ∗, Z ∈ g.

It is well known and easy to prove that M is equivariant with respect
to the representations on V ⊗ V ∗ and g. In fact, since ρµ (Ad (g)Z) =
ρµ (g) ρµ (Z) ρµ

(
g−1

)
we have

〈Ad (g)M (v ⊗ ε) , Z〉 = 〈Ad (g)M (v ⊗ ε) ,Ad
(
g−1)Z〉

= ε
(
ρµ
(
g−1) ρµ (Z) ρµ (g) v

)
= ρµ (g) v ⊗ ρ∗µ (g) ε = g · (v ⊗ ε) .

The same calculation shows that M is equivariant with respect to the
coadjoint representation.
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In the semisimple case the moment map has the following geometric
interpretation: ρµ is a faithful representation, thus g ≈ ρµ (g) ⊂ End (V ).
The trace form tr (AB) on End (V ) is non-degenerate. Thus, the moment
map is just the orthogonal projection with respect to the trace form of
End (V ) ≈ V ⊗ V ∗ onto ρµ (g) ≈ g.

As a consequence of equivariance, it follows that the image of a G-orbit
on V ⊗ V ∗ by M is an adjoint orbit.

Lemma 4.2. The image of the G-orbit G · (v0 ⊗ ε0) by M is the adjoint
orbit of Hµ defined by µ (·) = 〈Hµ, ·〉.

Proof. If α is a root and X ∈ gα then

ε0 (ρµ (X) v0) = (ρµ (X) v0)⊗ ε0 = −v0 ⊗
(
ρ∗µ (X) ε0

)
.

The second term vanishes if α > 0 whereas if α < 0 the third term
vanishes. Hence 〈M (ε0 ⊗ v0) , X〉 = 0. But, if H ∈ h then

ε0 (ρµ (H) v0) = µ (H) ε0 (v0) = µ (H) ,

that is, 〈M (ε0 ⊗ v0) , H〉 = µ (H) which shows that M (ε0 ⊗ v0) = Hµ.
Consequently, M (G · (v0 ⊗ ε0)) = Ad (G)Hµ.

Proposition 4.3. The G-orbit G · (v0 ⊗ ε0) is the homogeneous space
G/ZHµ .

Proof. Set G · (v0 ⊗ ε0) = G/L. We want to show that L = ZHµ .
The equivariance of M together with the equality M (G · (v0 ⊗ ε0)) =
Ad (G)Hµ imply that the isotropy subgroup at v0⊗ ε0 is contained in the
isotropy subgroup at Hµ, that is, L ⊂ ZHµ . Since ZHµ is connected, to
show the opposite inclusion it suffices to show that the Lie algebra zHµ of
ZHµ is contained in the isotropy algebra of v0 ⊗ ε0.

To verify this, we observe that the isotropy algebra of v0 is kerµ +∑
α>0 gα +

∑
α∈〈Θ0〉− gα, where 〈Θ0〉− is the set of negative roots gen-

erated by Θ0, which in turn is the set of simple roots that vanish on H0

(or Hµ). In this sum, the first term is given by elements H ∈ h such
that ρµ (H) v0 = 0. The second term appears in the isotropy algebra
because v0 is a highest weight vector. Finally the last term comes from
the fact that if α is a negative root and X ∈ gα, then ρµ (X) v0 = 0 if
and only if 〈α∨, µ〉 = 0. The roots that satisfy this equality are precisely
the roots in 〈Θ0〉−. Analogously, the isotropy algebra at ε0 is given by
kerµ +

∑
α<0 gα +

∑
α∈〈Θ0〉+ gα where 〈Θ0〉+ is the set of positive roots

generated by Θ0.
Now, set X ∈ zHµ = h ⊕

∑
α∈〈Θ0〉± gα. If X ∈

∑
α∈〈Θ0〉± gα then

ρµ (X) v0⊗ε0 +v0⊗ρ∗µ (X) ε0 = 0 since X belongs to the isotropy algebras
of v0 and ε0. Whereas if H ∈ h then

ρµ (H) v0 ⊗ ε0 + v0 ⊗ ρ∗µ (H) ε0 = µ (H) v0 ⊗ ε0 − µ (H) v0 ⊗ ε0 = 0.

Therefore, zHµ is contained in the isotropy subalgebra of v0 ⊗ ε0.

Corollary 4.4. The restriction of the moment map defines a diffeomor-
phism M : G · (v0 ⊗ ε0)→ Ad (G)Hµ.
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Via this diffeomorphism, the height function fH : Ad (G)Hµ → C de-
fines a function, also denoted by fH , on the orbit G · (v0 ⊗ ε0). This
function has a simple expression.

Proposition 4.5. Let v ⊗ ε ∈ G · (v0 ⊗ ε0). Then

fH (v ⊗ ε) = ε (ρµ (H) v) = tr ((v ⊗ ε) ρµ (H)) .

Proof. For a moment, denote by f̃H the function fH defined on G ·
(v0 ⊗ ε0). Then

f̃H (v ⊗ ε) = fH (M (v ⊗ ε)) = 〈M (v ⊗ ε) , H〉,

which is ε (ρµ (H) v) by the definition ofM . In the expression involving the
trace, v⊗ ε is regarded as an element of End (V ) and the second equality
follows from ε (Sv) = tr ((v ⊗ ε)S) which holds for any S ∈ End (V ).

4.2 Isomorphism with the open orbit in FHµ×FH∗µ

As mentioned earlier, the flags FHµ and FH∗
µ

are obtained as projective
orbits in P (V ) and P (V ∗) respectively. The origin of FHµ is identified with
the highest weight space [v0], and in the identification with the adjoint
orbit of the compact group K, this origin is precisely Hµ.

On the other hand, [ε0] is the lowest weight space in V ∗. The isotropy
algebra at [ε0] contains

∑
α<0 gα. Thus, [ε0] ∈ P (V ∗) is identified with

w0b
∗ ∈ FH∗

µ
, where b∗ is the origin of FH∗

µ
. Under the identification of FH∗

µ

with the adjoint orbit of the compact group K, the origin is −Hµ = w0H
∗
µ.

We use these identifications to see FH0 × FH∗
0

as the product of the
projective orbits G · [v0]×G · [ε0] ⊂ P (V )× P (V ∗). Then, the open orbit
in FH0×FH∗

0
becomes the diagonal G-orbit of ([v0] , [ε0]) ∈ P (V )×P (V ∗).

Denote this orbit by G · ([v0] , [ε0]), that is,

G · ([v0] , [ε0]) = {
(
ρµ (g) [v0] , ρ∗µ (g) [ε0]

)
∈ P (V )× P (V ∗) : g ∈ G}.

Now we describe the diffeomorphism between the orbit G · (v0 ⊗ ε0) ⊂
V ⊗ V ∗ and the orbit G · ([v0] , [ε0]) ⊂ FHµ × FH∗

µ
⊂ P (V ) × P (V ∗). In

fact, the diffeomorphism associates g ·([v0] , [ε0]) =
(
ρµ (g) [v0] , ρ∗µ (g) [ε0]

)
to g · (v0 ⊗ ε0) = ρµ (g) v0 ⊗ ρ∗µ (g) ε0. We obtain,

Proposition 4.6. Let Φ : G · (v0 ⊗ ε0) → G · ([v0] , [ε0]) be the diffeo-
morphism obtained by identification of both orbits with G/ZHµ . If v⊗ ε ∈
G·(v0 ⊗ ε0) then Φ (v ⊗ ε) = ([v] , [ε]) with inverse Φ−1 ([v] , [ε]) = (v ⊗ ε).

Proof. Our previous argument already proved this. Nevertheless, it is
worth observing that the maps v⊗ ε 7→ ([v] , [ε]) and ([v] , [ε]) 7→ v⊗ ε are
well defined, since v1 ⊗ ε1 = v ⊗ ε is equivalent to v1 = av and ε1 = a−1ε
which is also equivalent to ([v1] , [ε1]) = ([v] , [ε]).
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4.3 Isomorphism with T ∗FHµ

First of all, we recall the isomorphism between the adjoint orbit O(Hµ)
and the cotangent bundle T ∗FΘ. Here, Hµ remains fixed and is charac-
teristic for Θ, that is, Θ = {α ∈ Σ : α(Hµ) = 0}.

By the Iwasawa decomposition G = KAN we can write G = KPΘ

and the adjoint action of PΘ on Hµ is given by Ad(Pθ) ·Hµ = Hµ + n+
Θ,

where n+
Θ =

∑
Π+\〈Θ〉 gα. Thus,

O(Hµ) = Ad(G)Hµ = Ad(K)(Hµ + n+
Θ) =

⋃
k∈K

Ad(k)(Hµ + n+
Θ).

The identification of the adjoint orbit with the cotangent bundle is
given by the map that associates to each element of the adjoint orbit
Ad(k)(Hµ + X), X ∈ n+

Θ the linear functional f ∈ (Tkb0FΘ)∗ given by
f(Y ) = 〈Ad(k)X,Y 〉, Y ∈ Tkb0FΘ.

Proposition 4.7. Let µ be a highest weight and v0, ε0 the generators of
the highest weight space on V and lowest weight space on V ∗ respectively.
The diffeomorphism between G · (v0 ⊗ ε0) and T ∗FΘ is given by

g · (v0 ⊗ ε0) 7→ (Y 7→ 〈Ad(k)X,Y 〉, Y ∈ Tkb0FΘ), (4.1)

where g = kp is the Iwasawa decomposition, Ad(p)Hµ = Hµ +X, and the
flag FΘ is determined by Hµ.

5 Compactified adjoint orbits

We compactify adjoint orbits O (H0) to products of flags FH0 × FH∗
0

as
an auxiliary tool to identify Lagrangean submanifolds of the orbits. We
choose canonical complex structures on FH0 and FH∗

0
so that, for an ele-

ment w0 of the Weyl group W, the right action Rw0 : FH0 → FH∗
0

is anti-
holomorphic (proposition 5.8). Consequently the map Rw0 : FH0 → FH∗

0

is anti-symplectic with respect to the Kähler forms on FH0 and FH∗
0

given
by the Borel metric and canonical complex structures (corollary 5.10). We
then obtain further examples of Lagrangean graphs by composites (either
on the left or on the right) of Rw0 with symplectic maps.

5.1 Lagrangean graphs in adjoint orbits

On one hand, O (H0) can be embedded as an open dense submanifold
in a product of two flags (section 3); on the other hand, graphs of sym-
plectic maps are Lagrangean submanifolds inside the product, due to the
following general fact.

Let (M,ω) and (N,ω1) be symplectic manifolds. The cartesian prod-
uct M×N can be endowed with the symplectic form ω×ω1. If φ : M → N
is anti-symplectic that is, φ∗ω1 = −ω then graph (φ) ⊂ M × N is a La-
grangean submanifold with respect to ω × ω1. Similarly, we could use a
symplectic map (symplectomorphism) φ : M →M taking ω1 = −ω, which
is also a symplectic form.

With this in mind, to construct an assortment of Lagrangean subman-
ifolds in O (H0) we use an embedding O (H0) ↪→ F1×F2 into a product of
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flags. Taking symplectic forms ω1 and ω2 on F1 and F2 we obtain a sym-
plectic form ω1×ω2 on F1×F2 and consequently on O (H0) by restriction.
If φ : F1 → F2 is anti-symplectic then graph (φ) and graph (φ) ∩ O (H0)
are Lagrangean submanifolds of F1 × F2 and O (H0), respectively. The
intended construction involves, first of all, a discussion about the right
action of the Weyl group.

5.2 Right action of the Weyl group

Let g be a noncompact semisimple Lie algebra (real or complex) and let
G be the adjoint group of g and K ⊂ G the maximal compact subgroup.
The maximal flag of g is given by F = G/P = K/M , where P = MAN is
the minimal parabolic subgroup. The adjoint orbit of a regular element
H ∈ a = logA is given by O (H) = G/MA. The flag F is contained in
O (H) since F is a K-orbit of H.

The Weyl groupW is isomorphic to NormG (A) /MA = NormK (A) /M .
We obtain right actions of W on F = K/M (with W = NormK (A) /M)
and on O (H) = G/MA (with W = NormG (A) /MA). Moreover, the
fibrations G/MA → G/NormG (A) and F = K/M → K/NormK (A) are
principal bundles with structural group W.

Example 5.1. Let g = sl (n,R) or g = sl (n,C). Hence, a regular ele-
ment H is a diagonal matrix H = diag{a1, . . . , an} with a1 > · · · > an.
O (H) = {gHg−1 : g ∈ Sl (n,R)} (or C), that is, the orbit is the set of
diagonalizable matrices with the same eigenvalues as H. The Weyl group
W is the permutation group of n elements, whereas NormK (A) is the set
of signed permutation matrices (matrices such that each row or column
has exactly one nonzero entry ±1). The right action of a permutation
w ∈ W is given by

Rw : gHg−1 7→ gwH (gw)−1 = g
(
wHw−1) g−1

where w ∈ NormK (A) is the permutation matrix that represents w ∈ W.
In this expression for Rw the term wHw−1 is the matrix whose diagonal
entries are the same as the ones of H permuted by w in the permutation
group W.

The right action Rw of w ∈ W is in general completely different from
the left action of any of its representatives w ∈ NormK (A). For example,
in the case of sl (2,C), the Weyl group is {1, (12)} and the right action of
w = (12) in the flag S2 = CP 1 is the antipodal map. On the other hand,

w =

(
0 −1
1 0

)
∈ NormK (A)

is a representative of (12). The left action of w has 2 fixed points.

The right action of W leaves invariant the induced vector fields:

Proposition 5.2. Given an element A in the Lie algebra, denote by Ã the
induced vector field on the homogeneous space (G/MA or K/M). Then,

(Rw)∗ Ã = Ã for all w ∈ W.

Proof. Indeed, Rw commutes with the flow of Ã, which is the left action
of etA.
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5.3 The K-orbit and graphs

In section 3, we defined an embedding of the adjoint orbit into the product
FH0 × FH∗

0
, where FH∗

0
is the dual flag of FH0 .

Consider first of all the case when FH = F is the maximal flag, which
is self-dual. In this flag, the right action of W is well defined. Denote by
b0 the origin of F and set bw = Rwb0, w ∈ W.

Let w0 ∈ W be the principal involution (element of largest length as
a product of simple reflections). The embedding of O (H0) is given by
the G-orbit of (b0, bw0) under the diagonal action g (x, y) = (gx, gy). This
G-orbit is identified with the adjoint orbit O (H0) = G/MA for any H0

regular and real. Let K be the maximal compact subgroup of G (real
compact form in the case of complex G).

Proposition 5.3. For w ∈ W, the K-orbit of (b0, bw) by the diagonal
action coincides with the graph of Rw.

Proof. Take x = k · b0 ∈ F, k ∈ K. Then, Rw (x) = Rw (k · b0) =
k · Rw (b0) since the left and right actions commute. Thus, (x,Rw (x)) =
(k · b0, k ·Rw (b0)) = k · (b0, bw) belongs to the K-orbit of (b0, bw). Con-
versely, an element of the orbit k ·(b0, bw) = (x,Rw (x)), x = k ·b0, belongs
to the graph of Rw.

Remark 5.4. In the case when w = w0 is the principal involution, the
K-orbit of proposition 5.3 corresponds to the zero section of T ∗F when
O (H0) = G/MA is identified with the cotangent bundle. This happens
because the origin G/MA gets mapped to H0 ∈ O (H0) and the K-orbit
of H0 is identified to the zero section. On the other hand, the origin of
the open orbit G · (b0, bw0) ∈ F × F is (b0, bw0), so that its K-orbit gets
identified to the K-orbit of H0.

Remark 5.5. It follows directly from proposition 5.3 that the graphs of
right translations Rw, w ∈ W, are contained in the diagonal G-orbits
and consequently are compact inside these orbits. This does not happen
with left translations, not even by elements of NormK (A), which represent
elements of the Weyl group.

5.4 Example

For sl (2,C) the flag is CP 1 = S2 and W = {1, (12)}. The right action of
R(12) on S2 is the antipodal map. Another way to see this right action is to
identify CP 1 with the set of Hermitian matrices with eigenvalues ±1 (the
adjoint orbit of the compact group SU (2)). This identification associates
to a Hermitian matrix the eigenspace associated to the eigenvalue +1.
In this case, if ξ = 〈(x, y)〉 ∈ CP 1 then R(12) (ξ) is the eigenspace of the
Hermitian matrix associated to the eigenvalue −1. That is, R(12) (ξ) is the
Hermitian orthogonal ξ⊥ of ξ, which is generated by (−y, x) if ξ = 〈(x, y)〉.

Consider now the cartesian product S2 × S2 with the diagonal action
of G = Sl (2,C): g (ξ, η) = (gξ, gη). There are 2 orbits:

1. the diagonal ∆ = {(ξ, ξ) : ξ ∈ S2} and
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2. and open and dense orbit {(ξ, η) : ξ, η ∈ S2, ξ 6= η}. As a homoge-
nous space of G this open orbit is given by G/MA where MA is the
Cartan subgroup of diagonal matrices. Thus, it can be identified
with the adjoint orbit of

H0 =

(
1 0
0 −1

)
.

The right action R(12) on G/MA admits good descriptions in terms
of the identifications with the adjoint orbit Ad (G)H0 and with the open
orbit G · o in S2 × S2. They go as follows:

1. If A ∈ Ad (G)H0 then R(12) (A) is the unique matrix 2 × 2 with
eigenvalues ±1 which has the same eigenspaces as those of A, but
with the order of the eigenvalues switched.

2. If (ξ, η) ∈ G · o then R(12) (ξ, η) = (η, ξ), since in the first case the
order of the eigenspaces is switched.

5.5 Hermitian structures and symplectic forms

Suppose here that g is a complex algebra and take a Weyl basis Xα ∈ gα.
The real compact form u is generated by Aα = Xα−X−α and Zα = iSα =
i (Xα +X−α) with α > 0. If uα = span{Aα, Zα} then the tangent space
at the origin bH0 of FH0 is isomorphic to

TH0 =
∑

α(H0)>0

uα

via the isomorphism

Y ∈ TH0 7→ Ỹ (bH0) =
d

dt

(
etY · bH0

)
|t=0

∈ TbH0
FH0 .

The canonical complex structure J on FH0 is invariant by the compact
group K = exp u and at the origin of the subspaces uα, α > 0, it is given
by

JAα = Zα JZα = −Aα.
If w̃ is a representative of w ∈ W. Then the tangent space to w̃H0 is
identified with

Tw̃H0 =
∑

α(w̃H0)>0

uα

and the canonical complex structure Jw on Tw̃H0 is given by

JAα = Zα JZα = −Aα

withAα and Zα under the caveat that we take roots α such that α (w̃H0) >
0 (which are not in general positive roots).

Every K-invariant Riemmannian metric on FH0 is almost Hermitian
with respect to J (see [7]). In general, the corresponding Kähler form Ω is
not closed and consequently not symplectic. However, the Kähler form is
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symplectic for the case of the Borel metric (·, ·)B , which is the K-invariant
metric defined at the origin by (uα, uα)B = 0 if α 6= β and satisfying(

Ãα (H0) , Ãα (H0)
)B
H0

=
(
Z̃α (H0) , Z̃α (H0)

)B
H0

= α (H0)

(
Ãα (H0) , Z̃α (H0)

)B
H0

= 0

if α (H0) > 0.
This description of the Borel metric also holds at other points of

FH0 = Ad (U) · H0. For example, the tangent space at Ad (w̃) · H0 is∑
α(w·H0)>0 uα and the metric at uα is given by the same expression pro-

vided α (w ·H0) > 0.

Proposition 5.6. The map Rw0 : FH0 → FH∗
0

is an isometry of Borel
metrics.

Proof. Since Rw0 is equivariant by the left actions on FH0 and FH∗
0

and
the metrics are K-invariant, it suffices to verify the isometry at the origin.
Equivariance also also implies that (Rw0)∗ Ã = Ã. Thus, for x ∈ FH0(

(dRw0)x Ã (x) , (dRw0)x B̃ (x)
)B
Rw0

(x)
=
(
Ã (Rw0 (x)) , B̃ (Rw0 (x))

)B
Rw0

(x)
.

At x = H0 ∈ FH0 we have Rw0 (H0) = w0H
∗ = −H0. Now, if α (H0) > 0,

then (
Ãα (H0) , Ãα (H0)

)B
H0

= α (H0)

and the second term of the previous equality for A = B = Aα is(
Ãα (−H0) , Ãα (−H0)

)B
H0

= −α (−H0) = α (H0) .

The same holds true for Zα corresponding to any root α with α (H0) > 0,
so (

(dRw0)H0
Ã (H0) , (dRw0)H0

B̃ (H0)
)B
−H0

=
(
Ã (H0) , B̃ (H0)

)B
H0

for arbitrary A and B. This shows that Rw0 is an isometry.

Having obtained the isometry Rw0 , its holomorphicity provides us with
the symplectic isomorphism.

Proposition 5.7. The map Rw0 : FH0 → FH∗
0

is anti-holomorphic with
respect to the canonical complex structures on FH0 and FH∗

0
.

Proof. Let w̃0 be a representative of w0 such that Ad (w̃0)H∗0 = −H0 and
denote by J0 and Jw0 the complex structures on TH0FH0 and T−H0FH∗

0
,

respectively. Take a root α with α (H0) > 0, that is, (−α) (−H0) > 0. We
have

J0

(
Ãα (H0)

)
= Z̃α (H0) J0

(
Z̃α (H0)

)
= −Ãα (H0)
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since α (H0) > 0, and

Jw0

(
Ãα (−H0)

)
= −Jw0

(
Ã−α (−H0)

)
= −Z̃α (−H0)

Jw0

(
Z̃α (−H0)

)
= −Ã−α (−H0) = Ãα (−H0)

since (−α) (−H0) > 0.

On the other hand, (Rw0)∗ Ãα = Ãα and (Rw0)∗ Z̃α = Z̃α. Therefore,

Jw0

(
(dRw0)H0

Ãα (H0)
)

= Jw0

(
Ãα (−H0)

)
= −Z̃α (−H0)

Jw0

(
(dRw0)H0

Z̃α (H0)
)

= Jw0

(
Z̃α (−H0)

)
= Ãα (−H0)

whereas

(dRw0)H0
J0

(
Ãα (H0)

)
= Z̃α (−H0)

(dRw0)H0
J0

(
Z̃α (H0)

)
= −Ãα (−H0)

which shows that Rw0 is anti-holomorphic at the origin, and consequently,
on the whole flag by the invariance of the complex structures.

Corollary 5.8. If k ∈ K then the composites Rw0 ◦ k e k ◦ Rw0 are
anti-holomorphic.

Corollary 5.9. Let ΩH0 and ΩH∗
0

be the Kähler forms of the Hermitian
structures on FH0 and FH∗

0
given by the Borel metric and the canonical

complex structures. Then Rw0 is anti-symplectic, that is, R∗w0
ΩH∗

0
=

−ΩH0 .

5.6 Hermitian structures on products

The product FH0 × FH∗
0

is a flag of the product G × G associated to
(H0, H

∗
0 ), that is, FH0 × FH∗

0
= F(H0,H

∗
0 ). This flag has Borel metric and

invariant complex structures.
The adjoint orbit O (H0) is identified to the orbit G ·(H0,−H0) by the

diagonal representation (recall that −H0 ∈ FH∗
0

since Ad (w̃0)H∗0 = −H0

if w̃0 is a representative of w0). The adjoint orbit O (H0) has a complex
structure inherited from the inclusion into g. On the other hand, the
graphs considered above are Lagrangean with respect to a symplectic form
defined from the complex structures of the flags. Hence, to continue our
analysis we must compare these different complex structures.

We take h× h as a Cartan subalgebra in g× g. The roots of h× h are
those of h in each component and the root spaces are of the form gα×{0}
or {0} × gα.

The tangent space T(H0,−H0)F(H0,H
∗
0 ) is generated by (Aα, 0), (Zα, 0),

(0, Aα) and (0, Zα). To obtain these generators, we can take the positive
roots α > 0. Here, if α is a positive root, then α (H0) > 0 but α (−H0) <
0, determining a difference between the complex structures of the first
and second components.
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In fact, if α > 0 and (u× u)α denotes the space generated by the
4 vectors above, then the canonical complex structure on (u× u)α ⊂
T(H0,−H0)F(H0,H

∗
0 ) is given by

J (Aα, 0) = (Zα, 0) J (Zα, 0) = − (Aα, 0)
J (0, Aα) = − (0, Zα) J (0, Zα) = (0, Aα) .

(5.1)

Remark 5.10. These expressions show that the canonical complex struc-
ture on F(H0,H

∗
0 ) = FH0 × FH∗

0
is the product of the canonical complex

structures on FH0 and FH∗
0

.

Another basis of the tangent space T(H0,−H0)F(H0,H
∗
0 )is given by:(

X̃−α (H0) , 0
)
,
(
ĩX−α (H0) , 0

)
,
(

0, X̃α (−H0)
)
,
(

0, ĩXα (−H0)
)

with α running over the positive roots. These satisfy

J
(
X̃−α (H0) , 0

)
= −

(
ĩX−α (H0) , 0

)
J
(
ĩX−α (H0) , 0

)
=
(
X̃−α (H0) , 0

)
J
(

0, X̃α (−H0)
)

= −
(

0, ĩXα (−H0)
)
J
(

0, ĩXα (−H0)
)

=
(

0, X̃α (−H0)
)
.

(5.2)
Using these calculations we obtain the following statement.

Proposition 5.11. Let J in and J be the following complex structures on
O (H0) ≈ G · (H0,−H0):

1. J in is the complex structure on O (H0) ⊂ g inherited from g

2. J is the complex structure on G·(H0,−H0) obtained by restriction of
the complex structure on FH0 × FH∗

0
, defined at the origin by (5.4).

Then J in = −J .

Proof. It suffices to verify that equality holds at the origin, since both
complex structures are G-invariant. The tangent space to O (H0) at the

origin is generated by W̃ (H0) = [W,H0] with W in g±α and α running

over all positive roots. If W ∈ g−α, α > 0, then W̃ (H0) is “horizontal

” in the identification with G · (H0,−H0) whereas W̃ (H0) is “vertical” if
W ∈ gα, α > 0. For the complex structure on g we have Xα 7→ iXα and
iXα 7→ −Xα. Thus the complex structure J in is given in the product by

J in
(
X̃−α (H0) , 0

)
=
(
ĩX−α (H0) , 0

)
J in
(
ĩX−α (H0) , 0

)
= −

(
X̃−α (H0) , 0

)
J in
(

0, X̃α (−H0)
)

=
(

0, ĩXα (−H0)
)
J in
(

0, ĩXα (−H0)
)

= −
(

0, X̃α (−H0)
)
,

which is precisely the negative of (5.4).

Let (·, ·)B be the Borel metric on FH0 × FH∗
0

= F(H0,H
∗
0 ). If follows

immediately from the definition that (·, ·)B is the product of the Borel
metrics on FH0 and FH∗

0
.

This metric together with the canonical complex structure J , define a
Hermitian structure on FH0 ×FH∗

0
, which is invariant by K×K (compact
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group) but is not invariant by G × G, because the metric itself is only
invariant by K ×K. This Hermitian structures restricts to a Hermitian
structure in the open orbit G · (H0,−H0) ≈ O (H0), which is invariant by
the action of K (but not by that of G). Denote by Ω (·, ·) = (·, J (·))B the
corresponding Kähler form, which is a symplectic form. Since (·, ·)B is
the product metric and J the product complex structure, it follows that
Ω is the product of the Kähler forms in FH0 and FH∗

0
.

6 Lagrangean graphs in products of flags

By corollary 5.10 the map Rw0 : FH0 → FH∗
0

is anti-symplectic with re-
spect to the Kähler forms on FH0 and FH∗

0
given by the Borel metric and

canonical complex structures. Therefore, graph (Rw0) is a Lagrangean
submanifold of the product symplectic structure. We now obtain further
examples of Lagrangean graphs by composites (either on the left or on
the right) of Rw0 with symplectic maps.

Example 6.1. If k1, k2 ∈ K then the induced maps k1 : FH0 → FH0 and
k2 : FH∗

0
→ FH∗

0
are symplectic. Therefore, k1◦Rw0 ◦k2 is anti-symplectic,

hence its graph is a Lagrangean submanifold of FH0 × FH∗
0

= F(H0,H
∗
0 ).

Such graph is not contained in G · (H0,−H0), nevertheless its intersection
with the orbit is still a Lagrangean submanifold (noncompact if the graph
is not contained in the orbit).

The tangent space T(x,φ(x))graph (φ) is given by the vectors (u, dφx (u)).
For maps k ◦ Rw0 , with k ∈ K, the tangent spaces admit the following
description in terms of the adjoint representation.

Proposition 6.2. Let k ∈ K. The tangent space to graph (k ◦Rw0) at
(x, y) = (x, k ◦Rw0 (x)) is given by

{(A,Ad (k)A)∼ (x, k ◦Rw0 (x)) : A ∈ u}

where (A,Ad (k)A)∼ is the vector field on FH0 ×FH∗
0

= F(H0,H
∗
0 ) induced

by (A,Ad (k)A) ∈ u× u (u = Lie algebra of K).

Proof. If A ∈ u then (Rw0)∗ Ã = Ã, thus (dRw0)x

(
Ã (x)

)
= Ã (Rw (x)).

Applying dkRw(x) to this equality we get

(dk ◦Rw0)x

(
Ã (x)

)
= dkRw(x)

(
Ã (Rw (x))

)
= ˜Ad (k)A (k ◦Rw0 (x)) .

It follows that the tangent space to the graph is
(
Ã (x) , ˜Ad (k)A (k ◦Rw0 (x))

)
.

But the action of K × U on FH0 × FH∗
0

works coordinatewise. Hence(
Ã (x) , ˜Ad (k)A (k ◦Rw0 (x))

)
= (A,Ad (k)A)∼ (x, k ◦Rw0 (x))

which completes the proof, because the vectors Ã (x), A ∈ u, exhaust the
tangent space at x.
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In conclusion, we have described the following families of Lagrangean
submanifolds of the adjoint orbit O (HΘ) = Ad (G) ·HΘ ≈ G/ZΘ:

Theorem 6.3. For k1, k2 ∈ K and for m ∈ T :

• graph (k1 ◦Rw0 ◦ k2) corresponds to a Lagrangean submanifold of
O (HΘ), and

• graph (m ◦Rw0) corresponds to a Lagrangean submanifold of O (HΘ) .
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