MATH 541- Part II - summary

Material covered before the second exam. Write examples for each of the concepts defined below.

I. Algebraic Topology

- 1. Covering spaces. $p: E \to X$ is a covering space of X if every $x \in X$ has an open neighborhood U such that $p^{-1}(U)$ is a disjoint union of open sets S_i in E each of which is mapped homeomorphically onto U by p. Such U are called evenly covered.
- 2. Application. We proved the path lifting lemma and the covering homotopy lemma. As an consequence we have that: $p_*: \pi_1(E) \to \pi_1(X)$ is a monomorphism.
- 3. Covering transformations. For any covering space $p: E \to X$, the group of covering transformations is the group of all homeomorphisms ϕ of E which preserve the fibres, that is $p \circ \phi = p$.
- 4. Theorem. Given a covering space $p:(E, e_0) \to (X, x_0)$ with group of covering transformations G. If E is simply connected and locally pathwise connected, then g is canonically isomorphic to $\pi_1(X)$.
- 5. Example. $\pi_1(\mathbb{R}P^n) = \mathbb{Z}_2$.

HIGHER HOMOTOPY GROUPS

6. Higher homotopy. Consider the space X^I with the compact-open topology, and denote by Ω_{x_o} the subspace of X^I consisting of all loops at x_0 (with base point the constant loop at x_0). We define for $n \geq 2$

$$\pi_n(X, x_0) = \pi_{n-1}(\Omega_{x_0}).$$

- 7. Alternative definition. We showed that $\pi_n(X, x_0)$ can be interpreted as homotopy classes of maps $(S^n, s_0) \to (X, x_0)$.
- 8. Homotopy Sequence of a Fibration. To a fibration $F \to E \to X$ there is associated a long exact sequence

$$\rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(X) \rightarrow \pi_{n-1}(F) \rightarrow \cdots$$

9. Important Example. Using the Hopf Fibration

$$S^1 \to S^3 \to S^2$$

it follows that

$$\pi_3(S^2) = \mathbb{Z}.$$

II. DIFFERENTIAL TOPOLOGY

Review of Calculus:

- 10. Inverse Function Theorem. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}^n$ a C^r map $r \geq 1$. If Df_p is invertible, then f is a C^r local diffeomorphism at p.
- 11. Local Form of Submersions. Let $U \subset \mathbb{R}^m$ be open and $f: U \to \mathbb{R}^n$ a C^r map $r \geq 1$. Let $p \in U$, f(p) = 0, and suppose that Df_p is surjective. Then there exists a local diffeomorphism ϕ of \mathbb{R}^m at 0 such that $\phi(0) = p$ and

$$f\phi(x_1,\cdots,x_m)=(x_1,\cdots,x_n).$$

12. Local Form of Immersions. Let $U \subset \mathbb{R}^m$ be open and $f: U \to \mathbb{R}^n$ a C^r map $r \geq 1$. Let $q \in \mathbb{R}^n$, such that $0 \in f^{-1}(q)$, and suppose that Df_0 is injective. Then there exists a local diffeomorphism ψ of \mathbb{R}^n at q such that $\psi(q) = 0$, and

$$\psi f(x_1,\cdots,x_m)=(x_1,\cdots,x_m,0\cdots,0).$$

Important definitions.

- 13. Regular values. Let $f: M \to N$ be a C^1 map. We call $x \in M$ a regular point if f is submersive at x, otherwise we call x a critical point. A point $y \in N$ is called a regular value if for all $x \in f^{-1}(y)$, x is a regular point.
- 14. Regular Value Theorem. Let $f: M \to N$ be a C^r map, $r \ge 1$. If $y \in f(M)$ is a regular value, then $Y = f^{-1}(y)$ is a C^r submanifold of M. Moreover, dim(Y) = dim(M) dim(N).
- 15. Some examples:

 S^n is a C^{∞} submanifold of \mathbb{R}^{n+1}

SL(n) if a C^{∞} submanifold of GL(n).

III. CLASSIFICATION OF SURFACES

We used the following two consequences of the Seifert-Van Kampen theorem:

- 16. Theorem. Suppose $X = U \cup V$ where U and V are open in X and $U \cap V$ is pathwise connected. If $\pi_1(U \cap V) = 0$, then $\pi_1(X) = \pi_1(U) \star \pi_1(V)$.
- 17. Theorem. Suppose $X = U \cup V$ where U and V are open in X and $U \cap V$ is pathwise connected. If $\pi_1(V) = 0$, then $\pi_1(X) = \pi_1(U)/[\pi_1(U \cap V)]$, where $[\pi_1(U \cap V)]$ denotes the smallest normal subgroup of $\pi_1(U)$ containing $i_*(\pi_1(U \cap V))$.
- 18. Classification of Surfaces. Any connected compact surface is either homeomorphic to a sphere, or to a connected sum of tori, or to a connected sum of projective planes.