MATH 542 - Part 1- summary

We discussed Simplicial Homology, Singular Homology, and Celular Homol-
ogy. These homology theories have the common property that they satisfy
the Eilenberg-Steenrod axioms.

I. EILENBERG STEENROD AXIOMS FOR A HOMOLOGY THEORY.

(This part of the summary is copied from Spanier, Algebraic Topology p. 199.
Note that Spanier writes the axioms for a homology with integer coefficients.
Other rings can be used as coefficients.)

A homology theory H and O consists of

a. A covariant functor H from the category of topological pairs and maps to
the category of graded Abelian groups and homomorphisms of degree 0 [that
iS, H(Xa A) = {Hq(Xa A)}]

b. A natural transformation 0 of degree -1 from the functor H on (X, A) to
the functor H on (A, () [that is, 9,(X, A): H,(X, A) — (A)].

These satisfy the following axioms
1. Homotopy Axiom. If f,, fi: (X, A) — (Y, B) are homotopic, then

H(Fy) = H(f): H(X, 4) = H(Y, B)
2. Exactness Axiom For any pair (X, A) with inclusion maps i: A C X
and j: X C (X, A) there is an exact sequence

8y4+1(X,A Hy_1(i
.. G (X4 a1

Hy(4) 19 g o) B9 g x, 4) S g (4)

3. Excision Axiom For any pair (X, A), if U is an open subset of X such
that U Cint A, then the excision maps j: (X \ U, A\ U) C (X, A) induces an
isomorphism

H(j):HX\U,A\U) ~ H(X,A)

4. Dimension Axiom If P is a one-point space, then

Hq(P):{OZ Zig

This is the last of the axioms. One of the most important consequences
of the axioms for a homology theory is the Mayer Vietoris sequence.
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5. Mayer Vietoris If X = AU B with A and B open in X, then the Mayer
Vietoris long exact sequence gives H,(X) in terms of H,(A) and H,(B). The
following is exact

---—=> H,(ANB) - H(A)® H,(B) - H,(X) > H,.1(ANB) — - --

6. Homology of spheres We showed that:

m_ ) Z if g=0o0rn
Hy(S") _{ 0 otherwise

II. DEGREES OF MAPS.

We discussed several definitions of degrees of maps, without showing that
these definitions are compatible with each other. We will retake this problem
next semester. I recall here the two main definitions and some of their basic
properties.

First recall that if M is a compact and orientable topological manifold
(without boundary) of dimension n, then we saw that the top homology of
M is H,(M) = Z, and moreover, the manifold itself can be regarded as a
generator for this homology. This generator is referred to as the orientation
class of M and we denote it by 1 € Z.

7. Topological degree Let M and N be compact connected oriented topo-
logical manifolds (without boundary) and let f: M — N be a continuous
map. The topological degree of f is by definition the integer deg(f) = f.(1) €
H,.(N).

8. Smooth degree Let M and N be compact connected oriented smooth
manifolds (without boundary) and let f: M — N be a smooth map (=at
least C'). For a regular point z of f we set

[ 41 if det(Jac(df(z)) >0
Sg(x)—{ ~1 if det(Jac(df(z)) <0 °

Let y € N be a regular value for f (which we know exists by Sard’s lemma).
The smooth degree of f is by definition the integer deg(f) = Z sg(z).

zef~1(y)
We accepted (without proving) that these two degrees coincide for smooth

maps, and that is why we are allowed to denote both by the common symbol
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deg(f). An interesting exercise is to show that the smooth degree is well
defined, that is, to show that it does not depend upon the choice of regular
value.

We used degrees of maps between spheres to prove:

9. Hairy Ball theorem The sphere S™ admits a nowhere vanishing tangent
vector field if and only if n is odd.

It is evident from the topological definition of degree, that homotopic
maps have the same degree. The converse is not true in general, but it is
true if the target is a sphere.

10. Hopf degree theorem Two maps of a compact, connected, oriented
n—manifold M into S™ are homotopic if and only if they have the same
degree.

For a discussion of the proof, consult Guillemin and Pollack page 146.
We will come back to this result next semester.



