MATH 542- Part II - summary

Material covered before the second exam.

I. DE RHAM COHOMOLOGY

1. The exterior differentiation d on forms is defined as follows, given a k-form $\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}$ on \mathbb{R}^n the differential $d\omega$ of ω is the k+1-form

$$d\omega = \sum_{i_1 < \dots < i_k} \sum_{\alpha=1}^n \frac{\partial \omega_{i_1, \dots, i_k}}{\partial x^{\alpha}} dx^{\alpha} \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$

As a consequence of the fact that exterior differentiation commutes with pullbacks, that is, $f^*d\omega = df^*\omega$, we define exterior differentiation for forms over a manifold.

Very important property: $d^2 = 0$

- 2. Closed and exact forms. A differentiable form η over a smooth manifold M is called
 - closed if $d\eta = 0$,
 - exact if it is the differential of a k-1-form β over M, that is, $\eta = d\beta$.

From the very important property, it follows that every exact form is closed. Cohomology measures precisely the failure of the inverse to hold.

- 3. Cocycles. A k-cocycle over M is by definition a closed k-form over M. The set of all k- cocycles in M is classically denoted by $Z^k(M)$.
- 4. Coboundaries. A k-coboundary over M is by definition an exact k-form over M. The set of k- coboundaries on M is classically denoted by $B^k(M)$.
- 5. The k-th De Rham Cohomology group of M is the quotient

$$H^k(M) := \{k - cocycles\}/\{k - coboundaries\} = Z^k(M)/B^k(M).$$

- 6. Homotopy invariance of De Rham Cohomology: If M and N are homotopy equivalent, then $H^k(M) = H^k(N)$ for all $k \geq 0$.
- 7. Examples:

$$H^{k}(pt) = \begin{cases} 0 & if \quad k \neq 0 \\ \mathbb{R} & if \quad k = 0. \end{cases}$$

- 8. Poicaré Lemma: If A is any open star-shaped domain in \mathbb{R}^n then any closed form in A is exact. In other words, $H^k(A) = 0$ far any star-shaped domain A and any k > 0. In particular, $H^k(\mathbb{R}^n) = 0$ for any k > 0.
- 9. The classical example of a differential form in $\mathbb{R}^2 \{0\}$ is given by

$$d\theta = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy.$$

As a consequence $H^1(\mathbb{R}^2 - \{0\}) \neq 0$, in fact, by homotopy invariance

$$H^k({\mathbb{R}^2 - \{0\}}) = H^k(S^1).$$

10. Stokes Theorem:

$$\int_{\mathcal{C}} d\omega = \int_{\partial \mathcal{C}} \omega.$$

- 11. The main theorems of Calculus are particular instances of Stokes theorem. Exercise: show that the following theorems are consequences of Stokes Theorem:
 - Fundamental Theorem of Calculus:

$$\int_a^b F'(x) dx = F(b) - F(a)$$

• Stokes Theorem:

$$\int_{M} \langle (\nabla \times F), n \rangle dA = \int_{\partial M} \langle F, T \rangle ds$$

• Divergence Theorem:

$$\int_{M} div F dV = \int_{\partial M} \langle F, n \rangle dA$$

• Green's Theorem:

$$\int_{\partial M} P dx + Q dy = \int \int_{M} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

12. Poincaré duality. For a compact orientable manifold M of dimension n,

$$H^i(M) = H_{n-i}(M).$$