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Abstract. We discuss cohomological invariants of framed reflexive sheaves on

(n ≥ 3)-folds and show that some numerically admissible values of cohomology
do not occur.

1. Introduction

We first mention briefly some physics motivation. The paper [GKM] showed
gaps on the values of topological charges for instantons on local surfaces. Using
the Kobayashi–Hitchin correspondence (see [LT] for the general theory on KH) this
result is equivalent to the existence of gaps on the value of the holomorphic Euler
characteristic of framed sheaves over local surfaces ([GKM], lemma 6.5 and proposi-
tion 6.7). For (n ≥ 3)-folds there is no analogue of the beautiful KH correspondence,
simply because the equation defining anti-self-dual connections only makes sense in
4 dimensions. Nevertheless, sheaves on threefolds are very interesting for questions
in string theory and appear in various physical theories that can be regarded as
higher dimensional analogues of instanton counting, such as counting of dyons and
BPS states. In further generality sheaves on threefolds occur as D-branes in string
theory and cohomological values of such sheaves can be interpreted as some mea-
sure of energy accounted for within the brane charge. Thus, we expect that gaps
on cohomological invariants of sheaves on threefolds shall have interesting physics
interpretations.

In this paper we show existence of gaps on cohomology values for sheaves on
(n ≥ 3)-folds and study their filtrability properties (theorem 1). We also discuss
the deformation functor (definition 3) of framed sheaves on threefolds and present
a cohomological criterion for rigidity (theorem 2). We present several concrete
examples focusing on ruled and doubly-ruled threefolds (sections 2 and 5).

2. Doubly-ruled threefolds

In this section we define doubly-ruled threefolds, which will illustrate our theo-
rems, and we set up the terminology of splitting types.

Fix a smooth and connected projective curve C of genus q ≥ 0 and a rank 2
vector bundle G on C. Set S := P(G). Let u : S → C denote the ruling of S. Fix
a rank 2 vector bundle A on S and set X := P(A). Let v : X → S be a ruling and
D ⊂ X a section of v such that OX(D) is ample. Hence, we have 2 rulings and a
section:

(1) X v
// S

Duu
u

// C
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such that L := OD(D) is an ample line bundle on D. By assumption v|D → S is
an isomorphism and we will use it to see u : D → C as a ruling of D. Here

h1(X,OX) = h1(D,OD) = q.

Definition 1. Set a := u−1(p) · L for any p ∈ C. The integer a is called the fiber
degree of L.

Fix a rank r vector bundle E0 on D. For any p ∈ C let a1,p ≥ · · · ≥ ar,p be the
splitting type of E0|u−1(p).

Definition 2. Set ai := ai,p, where p is a general point of C. The integers a1 ≥
· · · ≥ ar are called the generic splitting type of E0.

Thus we have

O(a1)⊕ · · · ⊕ O(ar)

��

E0

��
u−1(p) // D.

Let b1 ≥ · · · ≥ br2 denote the generic splitting type of End(E0). Notice that
br2 = ar − a1, b1 = a1 − ar, and b1 − br2 = 2(a1 − ar).

3. Deformations of framed bundles

Let X be a smooth and connected projective n-fold and D a divisor on X. Fix
a vector bundle E on X and consider the exact sequence

(2) 0→ End(E)(−D)→ End(E)→ End(E|D)→ 0.

The cohomology exact sequence of (2) induces a linear map

ρ : H1(X,End(E))→ H1(D,End(E|D))

and a surjection

(3) η : H1(X,End(E)(−D))→ Ker(ρ).

Definition 3. Ker(ρ) is the tangent space to the deformation functor ΨE0
of E

with prescribed restriction E0 := E|D to E.

Let X be a doubly ruled threefold as in (1). Fix any vector bundle E0 on D
and use the isomorphism v|D to identify E0 with a vector bundle F on S. Set
E0 := v∗(F ). Then E0 is a vector bundle on X such that E0|D ∼= E0.

Definition 4. We will say that E0 is the trivial extension of E0 to X.

We first give a couple of examples of the extremal cases: (i) when E0 does not
have any non-trivial deformation with fixed restriction to D, and (ii) when the map
η appearing in (3) is an isomorphism.

Example 1. Take E0
∼= O⊕rD . Hence E0

∼= O⊕rX . Kodaira’s vanishing gives
h1(X,End(E)(−D)) = 0. Hence, a trivial vector bundle is rigid with respect to
the deformations which preserve its restriction to D. More generally, for i = 0, 1
and for all integers k > 0 we have hi(D,End(E0) ⊗ L∗⊗k) = 0, again by Kodaira
vanishing. Since h1(X,OX) = q, a trivial vector bundle on X is rigid without any
condition on its restriction to D if and only if q = 0.
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Example 2. Consider the case when E0 simple and L is effective. Since h0(D,L) >
0 and L 6= OD, then h0(D,End(E0) ⊗ L∗⊗k) = 0 for all integers k > 0 and the
corresponding maps η of (3) are isomorphisms.

Example 3. Assume that the fiber degree is related to the splitting type so that
a > a1 − ar (see definitions 1 and 2). Restrict End(E0) to a general fiber T of
the ruling u : D → C. Notice that End(E0)⊗ L∗⊗k|T has splitting type b1 − ka ≥
· · · ≥ br − ka. Since for all k > 0 we have b1 = a1 − ar, b1 − ka < 0, then
h0(D,End(E0) ⊗ L∗⊗k) = 0 for all integers k > 0, and the corresponding maps η
of (3) are isomorphisms.

Of course the above examples are special situations, and in general there will
be deformations of E0 and the map η will fail to be an isomorphism. We can also
regard this situation from the opposite viewpoint; instead of looking at E0 as an
extension of E0, we can regard E0 as a framed bundle, that is, E0 is given together
with its restriction to a divisor. We then find that such framing imposes restrictions
to the cohomology of E0.

4. Cohomology of framed bundles

Proposition 1. Let X be a smooth and connected projective n-fold, n ≥ 3, and D
an effective, smooth and ample divisor of X. Let E be a rank r vector bundle on
X such that E|D is trivial. Then E is trivial.

Proof. Since det(E|D) is trivial and D is ample, det(E) ∼= OX . For any integer t
consider the exact sequence

(4) 0→ E(−(t+ 1)D)→ E(−tD)→ E(−tD)|D → 0.

Since OD(D) is ample, E|D is trivial and dim(D) ≥ 2, we have hi(D,E(−tD)|D) =
0 for i = 0, 1 and all t ≥ 1 (Kodaira’s vanishing). Since E has depth at least 2 at
each point of X a theorem of Serre gives hi(X,E(−tD)) = 0 for i = 0, 1 and t� 0.
Hence, by decreasing induction on t and using (4) we get hi(X,E(−tD)) = 0 for
i = 0, 1, and all t ≥ 1. Thus, sequence (4) gives

(5) h0(X,E) = h0(D,E|D).

Since E|D is trivial, we get h0(X,E) = r. Let

(6) eE : H0(X,E)⊗OX → E

denote the evaluation map. Since eE is a map between vector bundles of the same
rank, it drops rank either at no point of X, or at all points of X, or else along
a non-empty hypersurface of X. The exact sequence (4) for t = 1 together with
(5) show that the restriction map H0(X,E) → H0(D,E|D) is an isomorphism.
Since E|D is trivial, eE does not drop rank at any point of D. The ampleness of
D implies that D intersects every curve contained in X and hence every surface
contained in X. Hence eE drops rank at no point of X, and consequently is an
isomorphism. �

Remark 1. (choice of framing) Let X be a smooth and connected projective n-
fold, n ≥ 3, and D an effective and ample divisor of X. Fix R ∈ Pic(X) and a rank
r vector bundle G on D. There is a natural bijection E 7→ E⊗R between the rank
r vector bundles (or reflexive sheaves) E on X such that E|D ∼= G and the rank
r vector bundles (resp. reflexive sheaves) F on X such that F |D ∼= G ⊗ (R|D).
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Hence we see that we gain nothing if instead of assuming E|D ∼= O⊕rD we assume
E|D ∼= (R|D)⊕r. To get a more interesting set-up we must either weaken the
assumption “D ample” or else take a different vector bundle on D instead of a
trivial vector bundle as a framing.

Proposition 2. Let X be a smooth and connected projective n-fold, n ≥ 3, and D
an effective, smooth and ample divisor of X. Let E be a rank r ≥ 2 reflexive sheaf
on X such that E|D ∼= O⊕rD . Then det(E) ∼= OX , and h0(X,E) ≤ r with equality
h0(X,E) = r if and only if E is trivial.

Proof. We follow similar lines as in the proof of Proposition 1. By assumption
E is locally free in a neighborhood of D and det(E) is a reflexive rank 1 sheaf.
Since X is smooth, det(E) is a line bundle ([H2], Proposition 1.9). Since D is
ample and det(E)|D ∼= det(E|D) ∼= OD, we get det(E) ∼= OX . Hence, we have
the exact sequence (4) in this case as well. To get the inequality h0(X,E) ≤ r
we just use that E is torsion free thus with depth > 0 at each point of X; which
gives h0(X,E(−tD)) = 0 for t � 0 by a cohomological property of depth (Serre).
If h0(X,E) = r, then the evaluation map eE : H0(X,E) ⊗ OX → E is surjective.
Given that eE |D is an isomorphism and D is ample, eE is an isomorphism outside
a codimension 2 algebraic subset of X. Since E is reflexive, eE is an isomorphism
([H2], Proposition 1.6). �

Theorem 1. Let X be a smooth and connected projective n-fold with n ≥ 3, and
D an effective, smooth and ample divisor of X. Let E be a reflexive sheaf on X of
rank r ≥ 2 such that E|D ∼= O⊕rD and v := h0(X,E) > 0. We have:

• (gap on cohomology) v 6= r − 1.
• (filtrability) If v 6= r, then there exists a rank r − v reflexive sheaf G on X

such that h0(X,G) = 0, G|D ∼= O⊕(r−v)D , and E fits into an exact sequence:

0→ O⊕vX → E → G→ 0.

Proof. Proposition 2 gives v ≤ r. Assume v ≤ r − 1 and consider the evaluation
map eE of (6). In a neighborhood of D the cokernel G := Coker(eE) is a trivial
rank r − v vector bundle. Since D is ample, we get that G is locally free outside
finitely many points of X. Fix any P ∈ X at which G is not locally free. The exact
sequence

(7) 0→ H0(X,E)⊗OX → E → G→ 0

shows that G has depth at least max{deph(G),depth(OX) − 1} at P ([E], Cor.
18.6). Hence G has depth at least 2 at each point of X. Let G′ be the torsion
part of G. Assume G′ 6= 0. We saw that G′ has finite support and depth at
least 2. However, any non-zero sheaf supported at finitely many points has depth
0, a contradiction. Thus G is torsion free, and consequently it is reflexive ([H2],
Proposition 1.3). �

Now we consider vector bundles E and B on X and D resp. with E|D ' B and
we will give conditions on B (we stress, on B, not on E) which assure that E is,
up to isomorphism, the only vector bundle on X with B as its restriction to D.

Theorem 2. (cohomological criterion for rigidity) Let X be a smooth and connected
projective n-fold, n ≥ 3, and D an effective, smooth and ample divisor of X. Fix
a rank r vector bundle B on D such that hi(D,Hom(B,B) ⊗ OD(−tD)) = 0 for
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i = 0, 1, and all integers t ≥ 1. Then, up to isomorphisms, there is at most one
vector bundle E on X such that E|D ∼= B.

Proof. Let E,A be vector bundles on X such that E|D ∼= A|D ∼= B. For any
integer x there is an exact sequence on X:
(8)
0→ Hom(E,A)(−(x+1)D)→ Hom(E,A)(−xD)→ Hom(B,B)⊗OD(−xD)→ 0.

Since Hom(E,A) is locally free, X is smooth and dim(X) ≥ 2, a theorem of Serre
gives hi(X,Hom(E,A)(−zD)) = 0 if z � 0. Hence, from (8) our assumptions
easily give h1(X,Hom(B,B)(−D)) = 0. Thus (8) implies that the identity map
idB : B → B lifts to a homomorphism u : E → A which is an isomorphism at each
point of D. Since X is connected and E,A are vector bundles on X with the same
rank, either u is an isomorphism or it drops rank on an effective divisor T (the zero
locus of the determinant of u). Since u|D = idB is an isomorphism, T ∩ D = ∅.
But given that D is ample, it meets every curve of X and hence every non-empty
effective divisor of D, a contradiction. �

Remark 2. (nonexistence of extensions) Of course, for many vector bundles B on
D there is no vector bundle extension to X such that E|D ∼= B (take for instance
the case r = 2, X = Pn, n ≥ 3, and D a hyperplane).

Example 4. Let X be a smooth and connected projective n-fold, n ≥ 3, and D an

effective, smooth and ample divisor of X. For any integer x ≥ 0 let D
(x)
X denote the

infinitesimal neighborhood of order x of D in X, i.e. the closed subscheme of X with
OX(−(x + 1)D) as its ideal sheaf. For instance D0

X = D. Fix any vector bundle
B on D. Since D is ample and dim(D) = n− 1 ≥ 2, there exists an integer t0 > 0
(depending only on D,B and X) such that hi(D,Hom(B,B) ⊗ OD(−tD)) = 0
for i = 0, 1 and all integers t ≥ t0. Let E,E′ be vector bundles on X such that

E|D(t0−1)
X

∼= E′|D(t0−1)
X and E|D ∼= E′|D ∼= B. We claim that E ∼= E′. Indeed,

the proof of Proposition 2 shows that we may lift any isomorphism τ : E|D(t0−1)
X →

E′|D(t0−1)
D to a morphism u : E → E′. Since u|D = τ |D is an isomorphism, E and

E′ are vector bundles with the same rank and D is ample, u is an isomorphism (see
the proof of Proposition 1).

Example 5. Take X,D,B as in Example 4. Here we give an example where
we may take t0 = 1 and hence B has at most one extension to X. Assume the
existence of an increasing filtration {Bi}0≤i≤r of B by subsheaves such that B0 = 0,
Br = B, and each Bi/Bi−1, 1 ≤ i ≤ r, is an algebraically trivial line bundle.
Hence Hom(B,B) has an increasing filtration {Ai}0≤i≤r2 by subsheaves such that
A0 = 0, Ar2 = Hom(B,B) and each Ai/Ai−1, 1 ≤ i ≤ r2, is an algebraically
trivial line bundle. Since ampleness is a numerical property for line bundles by
the Nakai criterion of ampleness (see [H1]), each (Ai/Ai−1)∗ ⊗ OD(D), 1 ≤ i ≤
r2, is an ample line bundle on D. Using the short exact sequences of sheaves
associated to the filtration {Ai}0≤i≤r2 together with Kodaira vanishing, we obtain
hi(D,Hom(B,B)⊗OD(−tD)) = 0 for i = 0, 1 and all integers t > 0. Thus, we can
apply theorem 2 to find a unique extension of B. If q := h1(D,OD) > 0, then the
set of all algebraically trivial line bundles on D is an Abelian variety of dimension
q and for each integer r ≥ 2 there exists an indecomposable rank r vector bundle
B on D with a filtration as above. In the set-up of doubly ruled 3-folds q is the
genus of the base curve C.
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5. Further examples of bundles and sheaves on threefolds

In our general set-up we have X = P(A) where A is a rank 2 bundle on a surface
S. Now we consider special cases where we have more concrete information.

Example 6. Fix an ample line bundle L on S and set X ′ := P(OX ⊕ L). Let
v′ : X ′ → S denote the ruling. The projection π1 : OS ⊕L→ OS induces a section
of v′ whose image D′ has normal bundle π∗(L)|S1. Hence D has ample normal
bundle and X\D ∼= Tot(L). However D′ is not an ample divisor of X ′.

The projection OS ⊕ L → L induces another section D′′ of v′ whose normal
bundle π2 : OD′′(D′′) is isomorphic to L∗(up to the identification of D′′ with S
given by the ruling v′). Hence the conormal bundle of D′′ in X ′ is ample. Since
the kernels of the projections π1 and π2 are complementary, D′ ∩D′′ = ∅. We may
see D′′ as the obstruction to the ampleness of D′ in X ′. For all integers r > 0,
c1, . . . , cr, set

A{c1, . . . , cr} := ⊕ri=1OX′(ciD
′′).

Since D′′ ∩ D′ = ∅, we have A{c1, . . . , cr}|D′ ∼= O⊕rD′ . Restricting to each D′′

we see that A{c1, . . . , cr} ∼= A{d1, . . . , dr} if and only if there is a permutation σ :
{1, . . . , r} → {1, . . . , r} such that di = cσ(i) for all i. Obviously, h0(X ′,OX′(cD′′)) =
0 if c < 0. Since L is ample, we see that D′′ appears with multiplicity c in the base
locus of the linear system |cD′′| on X ′. Hence

h0(X,A{c1, . . . , cr}) = #{i ∈ {1, . . . , r} : ci ≥ 0}.

Example 7. Let α : U → V be a P1-bundle. Hence every scheme-theoretic geo-
metric fiber F of α is isomorphic to P1. Thus h0(F,OF ) = 1 and hi(F,OF ) = 0
for all i ≥ 1. The first equality gives α∗(OU ) = OV . Since hi(F,OF ) = 0 for all
i ≥ 1, a base-change theorem ([OSS], p. 11) gives Riα∗(OU ) = 0 for all i ≥ 1. Now
assume that V is complete. Hence U is complete. The Leray spectral sequence of α
gives hi(U,OU ) = hi(V,OV ) for all i ≥ 0. Applying the observations to the rulings
X → D and X ′ → D′ we get

h1(X,OX) = h1(X ′,OX′) = q

and

hi(X,OX) = hi(X ′,OX′) = 0

for all i ≥ 2.

Proposition 3. With D′ and D′′ as in example 6 we have:

• h1(X,OX′(−D′)) = h1(X,OX′(−D′′)) = 0.
• h1(X ′,OX′(xD′′ −D′)) = 0 for all integers x ≥ 0.
• Fix an integer y > 0, then

h1(X ′,OX′(−yD′′ −D′)) ≤
∑
i=1

yh0(S,L⊗i).

• If h1(S,L⊗i) = 0 for all 1 ≤ i ≤ y, then

h1(X ′,OX′(−yD′′ −D′)) =
∑
i=1

yh0(S,L⊗i).

Proof. Consider the exact sequences on X ′

(9) 0→ OX′(cD′′ −D′)→ OX′(cD′′ −D′)→ OD′(cD′′)→ 0
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(10) 0→ OX′((x− 1)D′′ −D′)→ OX′(xD′′ −D′)→ OD′′(xD′′ −D′)→ 0

Recall that OD′(cD′′) ∼= OD′ for any c because D′ ∩ D′′ = ∅, also OD′′(xD′′) ∼=
L⊗−x. Hence OD′′(xD′′ −D′) ∼= L⊗−x. First take c = 0 in sequence (9), then the
natural map H1(X,OD′)→ H1(D,OD′) is an isomorphism (use that X ′ → D′ is a
P1-bundle and the proof that h1(X,OX′) = q given in Example 7). The restriction
mapH0(X,OX′)→ H0(X,OX′) is obviously bijective. Hence h1(X,OX(−D)) = 0.
In the same way using that X ′ → D′′ is a P1-bundle we get h1(X,OX′(−D′′)) = 0.

Now we check that h1(X ′,OX′(xD′′ −D′)) = 0 by induction on x. We proved
that this vanishing is true if x = 0. Assume x > 0 and that this vanishing is true
for the integer x′ := x− 1. Since L is ample on D′′ and x > 0, Kodaira vanishing
gives h1(X,L⊗−x) = 0. Hence the sequence (10) gives h1(X ′,OX′(xD′′−D′)) = 0.

We check the last two assertions by induction on y, starting from the case y = 0
which is true, because h1(X,OX′(−D′)) = 0. Assume that the last assertions are
true for the integer y′ := y − 1. Then use the sequence (10) with x := y − 1 to
prove both assertions. �

Proposition 4. h2(S,L⊗k) = 0 for all k ≥ 0.

Proof. Let u : S → C be the ruling of S. By Serre duality it is sufficient to prove
h0(S,L⊗−k ⊗ ωS) = 0, i.e. that h0(C, u∗(L

⊗−k ⊗ ωS)) = 0. Let T ∼= P1 be a
fiber of u. Since L is ample, L|T has degree > 0. Since ωS has degree −2 and
k ≥ 0, L⊗−k ⊗ ωS |T has degree < 0. Hence u∗(L

⊗−k ⊗ ωS) = 0 and it follows that
h0(C, u∗(L

⊗−k ⊗ ωS)) = 0. �

Example 8. Fix an integer k > 0 and assume h1(X,L⊗k) = 0. Proposition 4 gives
h2(S,L⊗k) = 0. By Riemann–Roch h0(S,L⊗k) = k2L2 − kωS ·L+ 1− q. Consider
the following property that L may have:

property (+) h1(S,L⊗i) = 0 for all integers i > 0.

If L has Property (+), then Proposition 3 shows that the integer

h1(X,Hom(Ac1,...,cr , Ac1,...,cr )(−D′))
is uniquely determined by the integers r, c1, . . . , cr and the intersection numbers
L2 and ωS · L. Recall that H1(X,Hom(A{c1, . . . , cr}, A{c1, . . . , cr})(−D′)) is the
tangent space at A{c1, . . . , cr} of the deformation functor of A{c1, . . . , cr} with
fixed restriction to D′.

Fix any ample line bundle G on S. Since G is ample, there is an integer kG > 0
such that h1(S,G⊗k) = 0 for all integers k ≥ kG. Hence for any integer k ≥ kG
the ample line bundle L := G⊗k has property (+). Thus, in all these cases the
tangent space to the deformation functor is entirely determined by the numerical
data r, c1, · · · , cr, L2, and ωS · L.

References

[E] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry, Springer,

Berlin (1995).
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