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Abstract

We show that holomorphic bundles on O(—k) for k > 0 are algebraic.
We also show that holomorphic bundles on O(—1) are trivial outside the
zero section. A corollary is that bundles on the blow-up of a surface at
a point are trivial on a neighborhood of the exceptional divisor minus
the exceptional divisor.

1 Introduction

Comparison between analytic and algebraic objects is a classical theme in
algebraic geometry and it is always interesting to know about cases when there
is no difference between these objects (see Serre’s celebrated paper “Géométrie

algébrique et géométrie analytique” [6]). We prove that holomorphic bundles



on O(—k) are algebraic with a view towards aplications of these results in the
study of bundles over compact surfaces containing these spaces, such as the

Hirzebruch surfaces. These aplications will appear in a subsequent paper.

In the particular case of O(—1) we show triviality outside the zero section.
Because O(—1) equals the blow-up of C? at the origin, this result yields an
immediate interpretation about bundles over a surface blown-up at a point.
Namely, that such bundles are trivial in a neighborhood of the exceptional
divisor minus the exceptional divisor. In other words, it means that outside
the exceptional divisor every bundle on a blown-up surface §p is a pull back

of a bundle on the surface S.

2 Preliminaires

The line bundle on P! given by the transition function z*

is usually denoted
O(—k). Since we will be studying bundles over this space, we will denote
O(—k) by M}, when we want to view this space as the base of a bundle. We
give My, the charts M = UUV, where U = C? = {(z,u)}, V = C?* = {(,,v)},

UNV = (C-{0}) x C with change of coordinates (£,v) = (271, 2Fu).

Since H'(O(—k),O) = 0, using the exponential sheaf sequence it follows
that Pic(O(—k)) = Z, and holomorphic line bundles on M}, are classified by
their Chern classes. Therefore it is clear that holomorphic line bundles over
M, are algebraic. We will denote by O'(j) the line bundle on M, given by

transition function z77.

If F is a rank n bundle over My, then over the zero section (which is a P')
E splits as a sum of line bundles by Grothendieck’s theorem (see [4]). Denoting

the zero section by £ it follows that for some integers j; uniquely determined up



to order Ey ~ @7 ,0(j;). We will show that such E is an algebraic extension

of the line bundles O'(j;).

3 Bundles on O(—k) are algebraic

This section is a generalization of Theorem 2.1 in [2].

Lemma 3.1 : Holomorphic bundles on M, with k > 0 are extensions of line

bundles.

Proof: We give the proof for rank two for simplicity. The case for rank n is
proved by induction on n using similar calculations. Suppose rank £ = 2 and
Ey ~ O(—7j1) ® O(—ja). A transition matrix for F from U to V' therefore takes

the form

T— (zjl +ua  uc )
- ud 272 + ub
where abc, and d are holomorphic functions in U N V. We want to change

coordinates to obtain an upper triangular transition matrix

2 we
0 272)°
which is equivalent to an extension
0= O (—j) = E = O'(—j3) = 0.

If we start with a matrix 7" where uc = 0, then the obvious choice of change
of coordinates is to multiply on the right and on the left by <(1) (1)) , Which
will make the matrix upper triangular. Now we may assume that uc # 0
and without loss of generality we may also assume that 7; > j5. Our required

change of coordinates will be

(611 612)_<1 0) <Zj1+ua uc )(1 0)
€1 e/ \n 1 ud 22 4ub) \€ 1



where £ is a holomorphic function on U and 7 is a holomorphic function on V'

whose values will be determined in the following calculations.

After performing this multiplication, the entry e;; becomes
ea1 = 1 (27" +ua) + ud + [nuc + (27 + ub)] .

We will choose ¢ and 7 to make e;; = 0. We write the power series expansions
for £ and npas € = Y22, &(2) vt and n =32 mi(2 1) (2*u)?, and plug into the

expression for ey;. The term independent of u in ey is
mo(271) 27 + &(2) 2.

Since jo — j; < 0 we may choose 1y(27') = 27277 and &(z) = —1. After these
choices es; is now a multiple of u. Suppose that the coefficients of n and & have
been chosen up to power u™ ! so that ey; becomes a multiple of u™. Then the

coefficient of u™ in the expression for ey is
Mo 2T 4 £, 27 + @
where @ is a holomorphic function of z and 27!. We separate ® into two parts
=, + by,

where @, is the part of ® containing the powers z* for i > j, and @, is the
part of ® containing powers z' for i < j,. The appropriate choices of 7, and
&, are

=27 g,
and

& = —z_j2<I>>j2.
These choices cancel the coefficient of u™ in ey;. Induction on n gives ey; = 0.

We get a transition matrix of the form

(zjl+ua uc )
0 22 4+ ub )’



for suitable abc and d. We must show that the power series defining £ and
1 are convergent. Let’s see that £ is a holomorphic function of z and u. We
have that ejeq = det (6(1)1 22) = det T. Therefore ej1e99 is a holomorphic
function in U NV which never vanishes. It follows that e;; is holomorphic
in a dense open subset of U N'V. But e;; = 2/ + ua + £uc, and 2/* + wa is
holomorphic in U NV since it is an entry of 7". Hence &uc is holomorphic on an
open dense subset of U N V. Now because & = £(z, u) has only positive powers
of z and u, if £ is divergent on a point p = (zo,up) € U NV, then it is also
divergent in the entire open subset A = {(z,u) €e UNV : |z]| > zp, |u| > up}
(see [3], p-4). Together with the fact that the product &uc is holomorphic in

U NV this forces uc to be identically zero in A and consequently in the whole

of U NV contrary to our assumptions.

To prove that n is holomorphic look at it as a series of positive powers in
2z ! and z*u and repeat an analogous reasoning. Now do a similar trick using

the change of coordinates

(771 0)<zj1+ua uc )(fl 0)
0 0 22 4ub) N0 &

and choose &, &, n; and 79 appropriately to obtain a new transition matrix

2t e
0 z]Z .

Theorem 3.2 : Holomorphic bundles over My, k > 0 are algebraic.



Proof: Let E be a holomorphic bundle over M) whose restriction to the zero

n

section is B, ~ @ ;O(—j;), then E has a transition matrix of the form

20 P12 P13
0 27 pog  pu
0 .. 0 Zjn—l pn—l,n
0 o s 0 ZJTL
from U to V, where p;; are polynomials defined on U NV.

Once again we will give the detailed proof for the case n = 2. The general
proof is by induction on n and is essentially the same as for n = 2 only

notationally uglier. [ |

For the case n = 2 we restate the theorem giving the specific form of the

polynomial.

Theorem 3.3 : Let E be a holomorphic rank two vector bundle on My whose
restriction to the zero section is E; ~ O(—j1) ® O(—jz), with j1 > jo. Then E

has a transition matriz of the form

0 2z

from U to V, where the polynomial p is given by

[(G1—d2—2)/k] j1—1

p= > S pad

i=1  I=kitja+1
and p =0 if j; < jo + 2.

Proof: Based on the proof of Theorem 3.1 we know that E has a transition

20 e
0 2zi2)°

matrix of the form



We are left with obtaining the form of the polynomial p, for which we perform

the coordinate changes

o D 26D
0 1 0 22 0 1/’
where the coefficients of £ = 32, &(2) u! and n = 2, m:(2 1) (2Fu)?, will be

chosen apropriately in the following steps. After performing this multiplica-

tion, the entry e(1,2) of the resulting matrix is
e(1,2) = 27 € +uc + 27 1.

The term independent of u in the expression for e(1, 2) is 272 &;(2)+272*ny (271).
However, we know from the expression for our matrix 7" (proof of lemma 3.1),
that e(1,2) must be a multiple of u; accordingly we choose & (z) = ny(27") = 0.

Placing this information into the above equation, we obtain

o0

e(1,2) = > (&n(2)2 + ca(z,271) 4+ mu(27H) 22T u™.

n=1

Proceeding as we did in the proof of Lemma 2.1, we choose values of &, and
N, to cancel as many coefficients of z and 2! as possible. In this case & and 7
are defined as powers series coming from tails ends of ¢ and consequently are
holomorphic because ¢ is. However, here &, appears multiplied by 2/t (and 7,
multiplied by 2727%"), therefore the optimal choice of coefficients cancels only
powers of z¢ with 4 > j; (resp. 2! with i < j, + kn). Consequently, e(1,2) is

left only with terms in 2! for j, + nk < [ < j;, and we have the expression

0o ji—1

= z z cilzlui.

i=1 l=nk+ja+1

But 7 may only vary up to the point where nk + jo +1 < j; — 1 and the

polynomial p is given by

[(j1—J2—2)/k] 511

p= Z Z pilZlUi-
i=1

I=ik+ja+1



4 Triviality outside the zero section

. From the previous section we know that bundles on M} are extensions of line

bundles. First we have the following lemma.

Theorem 4.1 : Holomorphic vector bundles on O(—1) are trivial outside the

zero section.

Proof: ;From Theorem 2.2 we know that a holomorphic bundle E on O(—1)
is algebraic. Let E|oc denote the restriction of F to the complement of the
zero section and let m : O(—1) — C? be the blow up map. Then 7, (E|q) is
an algebraic bundle over C2 — 0 and therefore it extends to a coherent sheaf F
over C2. Then the bidual F** is a reflexive sheaf and as such has singularity
set, of codimension 3 or more, which implies that F** is locally free. Moreover,
as a bundle on C? it must be trivial. But F** restricts to m,(E|¢:) on C% — 0,

hence 7, (E o) is trivial and so is E|ge. B

Corollary 4.2 Holomorphic bundles on the blow up of a surface are trivial on

a neighborhood of the exceptional divisor minus the and exceptional divisor.

Proof: Apply Theorem 3.1 to C?> = O(—1). B
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