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Abstract

In a recent paper, Gallego, González and Purnaprajna showed that rational 3-ropes
can be smoothed. We generalise their proof, and obtain smoothability of rational
m-ropes for m ≥ 3.

1 Introduction

We generalise the smoothing theorem for rational 3-ropes of Gallego, González and Pur-
naprajna to rational m-ropes with m ≥ 3. Our proof uses their construction presented in
[9].

Let C be a smooth, irreducible projective curve. A rope X of multiplicity m ≥ 2 over
C is a nowhere reduced scheme X whose reduced structure is C and which locally looks
like the first infinitesimal neighborhood of C inside the total space of a vector bundle of
rank m− 1 ([6, 9]).

Since the ideal sheaf E := IC,X of C inside X has square zero, it may be seen as
a coherent OC-sheaf, the so-called conormal bundle or conormal module of C. As an
OC-sheaf E is locally free of rank m− 1.

Our goal is to show smoothability of rational m-ropes. We recall the precise definitions:

Definition 1.1. Let Y be a reduced connected scheme and let E be a locally free sheaf
of rank m− 1 on Y . A rope of multiplicity m or m-rope on Y with conormal bundle E is
a scheme X with Xred = Y such that

• I2
Y,X = 0 and

• IY,X |Y ∼= E as OY -modules.

Definition 1.2. A smoothing of a rope X is a flat integral family X of schemes over a
smooth affine curve T such that over a point 0 ∈ T we have X0 = X, and Xt is a smooth
irreducible variety over the remaining points t ∈ T \ {0}.

Here we consider only the case when Y = C is a smooth curve with arithmetic genus
q := pa(C) = 1 − χ(OX), and we work over an algebraically closed field of characteristic
zero. Any m-rope X on C with conormal module E gives an extension class

ε ∈ Ext1OX

(
ωC , E

) ∼= H1
(
C; E ⊗ ω∗C

)
(cf. [10, 1.2] or [5, §1] for the case m = 2). Two ropes X, X ′ with conormal module E are
isomorphic over Y if and only if their extension classes are in the same orbit by the action
of Aut(E) on Ext1OX

(
ωC , E

)
(cf. [10, 1.2]). There is an exact sequence of OX -modules

0 −→ E −→ OX −→ OC → 0 , (1)
∗The first author was partially supported by MIUR and GNSAGA of INdAM (Italy).
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and so χ(OX) = m · χ(OC) + deg(E) = m(1− q) + deg(E). Let g := pa(X) = 1− χ(OX)
be the arithmetic genus of X. Obviously, if X is a flat limit of a family of smooth,
connected projective curves, then χ(OX) ≤ 1, i.e. deg(E) ≤ m(q − 1) + 1, and g is the
genus of the nearby smooth curves. Hence g ≥ 0. Here (as in [9, §4]) we will only consider
rational m-ropes, i.e. we will assume that q = 0. In the case m = 3 Gallego, González
and Purnaprajna proved that if pa(X) ≥ 0, then the rational 3-rope X may be smoothed,
both as abstract scheme and as scheme embedded in a fixed projective space [9, Theorem
4.5]. Here we use their proof to solve the case m ≥ 4, proving the following result.

Theorem 1.3 (Main theorem). Fix integers r > m ≥ 3 and g ≥ 0 and let X be any
rational m-rope such that 1 − χ(OX) = g. Then X may be smoothed as an abstract
scheme.

Moreover, there exist an embedding j : X → Pr and a flat family {Xt}t∈T of subschemes
of Pr parametrized by an integral and smooth affine curve T with the following properties:

1. There exists a point 0 ∈ T such that j(X) = X0, and

2. for all t ∈ T\{0}, Xt is a smooth connected curve of genus g and degree m ·deg j(X).

For the existence of embedding j : X → Pr with a fixed degree, see Lemma 2.6 and
Remark 2.7.

2 Proof of the Main Theorem

We begin by collecting a few results which show the existence of many non-degenerate
embeddings of an m-rope in Pr for all r ≥ m + 1.

Lemma 2.1. Fix an integer m ≥ 3 and let E be a vector bundle of rank m − 1 on
P1. There is a uniquely determined sequence of integers b1 ≥ · · · ≥ bm−1 such that
E ∼=

⊕m−1
i=1 OP1(bi), and deg(E) = b1 + · · · + bm−1. Then E is rigid if and only if

b1 ≤ bm−1 + 1.

Proof. This is a classical result of the deformation theory of vector bundles on P1.

Let X be an m-rope over C with canonical module E = IC,X . Since E2 = 0 and
H2(C; E) = 0, there is an exact sequence of Abelian groups

0 −→ H1(C; E) −→ Pic(X) −→ Pic(C) −→ 1 , (2)

in which the group structure of H1(C; E) as a subgroup of Pic(X) is the usual addition
of the k-vector space (see [11, p. 446] for the case k = C, or the proof of [5, Proposition
4.1] for an arbitrary field k). Hence for every L ∈ Pic(C) there exists an L′ ∈ Pic(X) such
that L′|C ∼= L. Now assume that q := pa(C) = 0, so C ∼= P1. By Lemma 2.1 there are
integers a1 ≥ · · · ≥ am−1 such that E ∼=

⊕m−1
i=1 OP1(−ai).

Lemma 2.2. With the notation as above, fix d ∈ Z and some Ld ∈ Pic(X) such that
Ld|C ∼= OP1(d). If d ≥ max{2, a1 + 1}, then Ld is very ample, h1(X; Ld) = 0, and
h0(X; Ld) = (m + 1)d−

∑m−1
i=1 ai.

Proof. The last assertion is obvious, because h1
(
P1; OP1(d)

)
= h1

(
P1; E(d)

)
= 0. To

check the very ampleness of Ld, it suffices to prove that h0
(
X; IZ ⊗Ld

)
= h0

(
X; Ld)− 2

(or, equivalently, h1
(
X; IZ ⊗ Ld

)
= 0) for any length-2 zero-dimensional subscheme

Z ⊂ X. Fix an affine neighborhood U of Z in X. Since every affine m-rope is split, there
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is a retraction u : U → U ∩ C. There is a length-2 zero-dimensional scheme W such that
Z ⊂ u−1(W ). Hence it is sufficient to prove that h1

(
X; Iu−1(W ) ⊗ Ld

)
= 0. The latter

vanishing is true, because h1
(
P1; OP1(d− 2)

)
= h1

(
P1; E(d− 2)

)
= 0. Twisting (1) with

OP1(d) we get h1(X; Ld) = 0, and h0(X; Ld) = (m + 1)d−
∑m−1

i=1 ai.

Taking d as in the proof of Theorem 1.3 below, we see that in general we are able to
smooth only certain types of embeddings.

Lemma 2.3. Let Y be a smooth curve of genus g and m ∈ Z such that m ≥ max{g+1, 2}.
Let R be a general element in Picm(Y ). There exists a general two-dimensional linear
subspace V of H0(Y ; R) that spans R, and any such V determines a degree-m morphism
f : Y → P1. Then the sheaf G := f∗(OY )

/
OP1 is locally free of rank m−1, and G is rigid.

Proof. Since R is general and m ≥ g + 1, h1(Y ; R) = 0. Thus, h0(Y ; R) = m + 1− g ≥ 2
by Riemann-Roch. The generality of R implies that R is spanned, and hence a general
two-dimensional linear subspace V of H0(Y ;R) spans R. Any such V determines a degree-
m morphism f : Y → P1. Since OY is torsion-free, so is f∗(OY ), which is therefore locally
free; also h0

(
P1; f∗(OY )

)
= h0

(
Y ; OY

)
= 1. Therefore f∗(OY ) has precisely one trivial

line subbundle, so the sheaf G := f∗(OY )
/
OP1 is locally free. Let b1 ≥ · · · ≥ bm−1 be

the splitting type of G, so b1 + · · · + bm−1 = deg(G). Since 1 − g = χ(OY ) = χ(G) +
χ(OP1) = deg(G) + m, we get deg(G) = 1−m− g. Since h0(Y ; OY ) = h0(P1; OP1) = 1,
h0(P1;G) = 0, i.e. b1 < 0. Since R ∼= f∗(OP1(1)), we have h1

(
Y ; R

)
= h1

(
P1; G(1)

)
by

the projection formula. Since h1(Y ;R) = 0, we get bm−1 + 1 ≥ −1. Hence bm−1 ≥ b1 − 1,
and G is rigid by Lemma 2.1.

Lemma 2.4. Fix integers m, g such that 2 ≤ m ≤ g ≤ 2m−2 and let Y be a general smooth
curve with genus g. There exists a line bundle R ∈ Picm(Y ) such that h0(Y ; R) = 2
and R is spanned. Hence R determines a degree-m morphism f : Y → P1 such that
R ∼= f∗

(
OP1(1)

)
. Then the sheaf G := f∗(OY )

/
OP1 is locally free of rank m− 1, and G is

rigid.

Proof. Brill-Noether theory gives the existence of R ∈ Picm(Y ) such that h0(Y ; R) = 2
and R is spanned [2, Theorem V.1.1]. The sheaf G is locally free by the same argument
as in the proof of Lemma 2.3. Let b1 ≥ · · · ≥ bm−1 be the splitting type of G. As in the
proof of Lemma 2.3, the projection formula gives, for all c ∈ Z≥0,

h0
(
Y ; R⊗c

)
= h0

(
P1; OP1(c)

)
+ h0

(
P1; G(c)

)
,

i.e. h0
(
P1; G(c)

)
= h0

(
Y ; R⊗c

)
− c − 1. Since h0(Y ; R) = 2, we get h0

(
Y ; G(1)

)
= 0,

i.e. b1 ≤ −2. The Gieseker-Petri theorem gives h1
(
Y ; R⊗2

)
= 0 [1, Cor. 5.7]. Hence

bm−1 ≥ −3, and G is rigid by Lemma 2.1.

Lemma 2.5. Let D ⊂ Pr be a smooth rational curve of degree d > 0 and assume that
r ≥ 2. Let ND be the normal bundle of D in Pr and n1 ≥ · · · ≥ nr−1 its splitting type.
Then nr−1 ≥ d.

Proof. The Euler sequence of TPr shows that TPr(−1) is spanned. Consequently, TPr(−1)|D
is spanned. Since D is a closed submanifold of Pr, there is a surjection TPr|D → ND.
Thus, ND(−1) is spanned, i.e. nr−1 − d ≥ 0.

Lemma 2.6. Fix integers r > m ≥ 2, d > 0, let E be a vector bundle of rank m− 1 on P1

of splitting type e1 ≥ · · · ≥ em−1, and let X be the rational m-rope with conormal bundle
E.
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Fix any embedding u : P1 → Pr (we do not assume that u(P1) spans Pr) and let d :=
deg u(P1). If d ≥ −em−1, then there exists an embedding j : X → Pr such that j|Xred

= u.
Moreover, h1

(
P1; E ⊗ u∗OPr(1)

)
= 0.

Proof. Set D := u(P1) and let ND be the normal bundle of D in Pr. Let n1 ≥ · · · ≥ nr−1

be the splitting type of ND; so the splitting type of N ∗
D is −nr−1 ≥ · · · ≥ −n1. By Lemma

2.5 we have −ni ≤ −d for all i. By [10, Proposition 2.1] or [9, Theorem 2.2], there is a
one-to-one correspondence between the surjections N ∗

D → E and embeddings j : X → Pr

such that j|Xred
= u. Since rkN ∗

D = r−1 > rk E , a surjection N ∗
D → E exists if −d ≤ em−1,

i.e. if d ≥ −em−1. The last sentence is obvious, because h1
(
P1; E(t)

)
= 0 if and only if

t ≥ −em−1 − 1.

As an aside, the following observation shows the existence of many rational m-ropes in
Pm, but notice that their conormal bundles must satisfy very strong restrictions. Since in
the statement of Theorem 1.3 we assume r > m, these are not the ropes that our theorem
addresses.

Remark 2.7 (Embedding m-ropes in Pm). Fix integers m ≥ 2, d > 0 and a vector bundle
E on P1 of rank m − 1 with splitting type e1 ≥ · · · ≥ em−1. Let X be the rational m-
rope with conormal bundle E . Let u : P1 → Pm be an embedding such that the curve
D := u(P1) has degree d. Let ND be the normal bundle of D in Pr and n1 ≥ · · · ≥ nm−1

its splitting type. Since rk E = rkND, any surjection N ∗
D → E must be an isomorphism.

Hence there exists an embedding j : X → Pm such that j|Xred
= u if and only ifN ∗

D
∼= E

[10, Proposition 2.1 (2)]. Thus, the existence problem of embeddings j of X such that
j|Xred

is associated to a subseries of H0
(
P1; OP1(d)

)
, and is equivalent to the study of all

possible splitting types of the normal bundles ND for some D = u(P1).
The case m = 2 is trivial, because we must have 1 ≤ d ≤ 2, so D is either a line or a

smooth conic. From now on we assume m ≥ 3. We first consider the embeddings spanning
Pm. Thus we assume for a moment d ≥ m. If m = 3, then the set of all splitting types
arising in this way is known, and the set of all smooth rational space-curves with fixed
normal bundle has a very interesting geometry [8]. If m > 3, then all possible splitting
types n1 ≥ · · · ≥ nm−1 that may arise if we allow the map P1 → Pr to be unramified but
not necessarily injective are described in [13]. For arbitrary m, the rigid vector bundle, i.e.
the one with bm−1 ≥ b1−1, arises as the normal bundle of the general degree-d embedding
P1 ↪→ Pm.

Now we look at the embeddings for which D spans a k-dimensional linear subspace M
of Pm for some k < m. Let ND,M denote the normal bundle of D in M with splitting type
b1 ≥ · · · ≥ bk−1. By Lemma 2.5 we have bk−1 ≥ d. Since ND

∼= ND,M ⊕ OD(1)⊕(m−k),
we get ni = bi if 1 ≤ i ≤ k − 1 and ni = d if k ≤ i ≤ m − 1. Assume that E∗ ∼= ND, i.e.
assume the existence of degree-d embedding u of P1 and embedding j : X → Pm such that
j|Xred

= u. By Lemma 2.5 we have e1 ≤ −d. If u(P1) spans Pm, then we have e1 ≤ −d−1.
Since degND = (m + 1)d− 2, we have e1 + · · ·+ em−1 = 2− (m + 1)d. According to [13],
these are the only restrictions if we allow unramified but non-injective maps u. Notice
that h1

(
P1; E ⊗ u∗OPr(1)

)
= 0 if and only if d ≥ −em−1− 1. If u(P1) spans Pm, then this

condition is satisfied only if e1 = em−1, i.e. if and only if E is balanced.
//

We are now in a position to prove the main theorem.

Proof of Theorem 1.3. Let E be the conormal bundle of the m-rope X, and let e1 ≥ · · · ≥
em−1 be the splitting type of E . Also, let G be the only rigid vector bundle on P1 with rank
m− 1 and degree 1− g −m. If g ≥ m, then there exists a degree-m covering f : Y → P1

such that Y is a smooth curve of genus g and f∗(OY ) ∼= OP1 ⊕G [3, Proposition 1].

4



There are various ways to see the equivalence between the rigidity of G and the state-
ments in [3] or in [7, Proposition 2.1.1]. We can just use our Lemma 2.4; alternatively the
reader may wish to consult [13, 2.4, 2.5] or [4, Remark 1]. For a different proof in the case
g ≥ 2m + 1, see [7, Proposition 2.1.1]; there Y is a general m-gonal curve of genus g.

Lemma 2.3 gives the same result if m ≥ max{g + 1, 2}, and Lemma 2.4 shows that
such coverings are very common. Hence for all integers g ≥ 0 there is a smooth curve Y
of genus g and a degree-m morphism f : Y → P1 such that the rank-(m−1) vector bundle
f∗(OY )

/
OP1 is rigid.

By [9, Corollary 2.7], any rational m-rope with conormal bundle G may be smoothed.
Moreover, for any r > m, Lemma 2.6 yields the existence of an embedding j : X ↪→ Pr,
where j∗OPr(1) = Ln for some suitable n. (We also get the existence of such an embedding
for r = m from Remark 2.7.) Recall that Ln|C ∼= OP1(n) and that H1

(
C; E ⊗ Ln|C

)
=

H1
(
C; Ln|C

)
= 0. Then we may apply [9, Theorem 2.4], and j(X) can be smoothed

inside Pr.
Note that since G is rigid, the condition h1

(
P1; G⊗ j|∗Xred

(OPr(1))
)

= 0 is satisfied if
and only if j|Xred

is a degree-d embedding of P1 such that d(m− 1) + 1− g −m ≥ 1−m,
i.e. if and only if d(m − 1) ≥ g. Any vector bundle E on P1 of rank m − 1 and degree
1 − g − m is a degeneration of a flat family of vector bundles on P1 isomorphic to G.
To get an embedding of X, we need a degree-d embedding of P1 with d ≥ −em−1. If X
has E as conormal bundle, we need to assume that deg j(Xred) ≥ −em−1 − 1, where now
e1 ≥ · · · ≥ em−1 is the splitting type of E. Notice that we cannot fix the same integer
deg j(Xred) for all bundles E with rank m−1 and degree 1−g−m. Very nice degeneration
techniques are given in [9, Propositions 4.3 and 4.4], and Case 2 of the proof of Theorem
4.5 shows that the smoothing (both as abstract schemes and as embedded schemes) is
true for arbitrary rational m-ropes with the same arithmetic genus g, if we only consider
as their supports embeddings u : P1 → Pr such that deg u(P1) ≥ −em−1 − 1. The key
condition h1

(
P1; B ⊗ j∗(OPr(1))

)
= 0 both for B = E and for B = G is satisfied by the

last sentence of Lemma 2.6.
For reader’s sake we summarize the part of the proof in [9] that we need: Let X be

a rational m-rope with arithmetic genus g. Since E is a degeneration of G, there are an
integral scheme S, 0 ∈ S, and a rank-(m− 1) vector bundle E on P1 × S such that

E|p−1
2 (0)

∼= E and E|p−1
2 (s)

∼= G for a general s ∈ S \ {0},

where p2 : P1 × S → S is the projection onto the second factor. Let p1 : P1 × S → P1 be
the projection on the first factor. Set A := Ext1

p2

(
p∗1(ωP1), E

)
, where Ext1

p2
is the relative

Ext1-sheaf with respect to p2. The OS-sheaf A is coherent. If the splitting type of E is
very unbalanced (i.e. if it contains an integer ≥ −2), then A is not locally free. The total
space V(A) of A parametrizes a family of rational m-ropes containing all m-ropes with
conormal bundle E and all m-ropes with conormal bundle G. Notice that “smoothing ”
is a closed condition. When A is locally free, then V(A) is irreducible and the rope X is
smoothable. To handle the general case, Gallego, González and Purnaprajna made the
following nice observation [9, Proof of Proposition 4.4]: Even if A is not locally free, the
fact that the fibers of p2 have dimension 1 gives that R1(p2)∗A = H1

(
P1; A|{s}

)
for every

s ∈ S [12, II.5, Corollary 3]. Since S is affine, Theorem A of Serre gives the existence of
z ∈ H0

(
S; R1(p2)∗A) such that z(0) = ε. The family of pairs

{(
E|{s}, z(s)

)}
s∈S

gives a
flat family of ropes X as fiber over 0 and smoothable general fiber. Following more details
from [9] one can also obtain embedded deformations.
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