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Abstract

Let W be the germ of a smooth complex surface around an ex-
ceptional curve and let E be a rank 2 vector bundle on W. We study
the cohomological properties of a finite sequence {E;}1<;<; of rank 2
vector bundles canonically associated to E. We calculate numerical
invariants of E in terms of the splitting types of E;,1 < j <t. IfSis
a compact complex smooth surface and F is a rank two bundle on the
blow-up of S at a point, we show that all values of c2(E) —co(p«(E)VY)
that are numerically possible are actually attained.
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1 Introduction

We consider exceptional curves in the following two cases. In the first case,
let W be a smooth connected complex analytic surface which contains an
exceptional divisor i.e. a smooth curve D ~ P! with Op(—1) as normal
bundle. Let U be a small tubular neighborhood of D in the Euclidean topol-
ogy and let p:U — Z be the contraction of D. In this case Z is the germ
of a smooth surface around the point P:= p(D). In the second case, let W
be a smooth connected algebraic surface defined over an algebraically closed
field K with arbitrary characteristic. We assume that W contains an ex-
ceptional curve D and denote by U the formal completion of W along D.
Let p:U — Z be the contraction of D. In this case Z is a formal smooth
2-dimensional space supported at P. In what follows we use the notation
defined above to represent either case. Let I be the ideal sheaf of D in U
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and consider a rank 2 vector bundle E over U. Consider the pair of inte-
gers (a,b) such that E|p ~ Op(a) ® Op(b). We will refer to the pair (a,b)
as the splitting type of E. Since Z is a smooth surface the bidual p,(E)"Y
is locally free and hence free because Z is 2-dimensional. There is a natu-
ral inclusion j:p.(E) — p.(E)"Y such that coker(j) has finite length. Set
Q: = coker(j). We show that the pair (z, w):= (h°(Z,Q), h°(Z, R'p.(E))) of
numerical invariants of E is uniquely determined by a sequence of pairs of
integers associated to E in [B| using elementary transformations. We review
the construction of the associated sequence and prove the following results.

Theorem 0.1. Let E be a rank 2 vector bundle on W with associated ad-
missible sequence {(a;,b;)},1 < i <t. Then we have the equalities

w:=h"(Z,R'p(E)) = > maz{-b —1,0}

1<i<t

and

z:=h"(Z,Q)= > ai—a; — > maz{-b —1,0}.

1<i<t 1<i<t

Every admissible sequence is associated to a rank 2 vector bundle on W (see

[B] Th.0.2). For simplicity, we normalize our bundles to have splitting type
(j,—j+e), with e = 0 or e = —1. We have the following existence theorem.

Theorem 0.2. For every pair of integers (z,w) satisfying j —1 —e < w <
jG=-1/2—jeand1 < z<j(j+1)/2 withj >0 and e > 0 or —1, there
erists a rank 2 vector bundle E on W with splitting type (j,—j + €) having
numerical ivariants h°(Z, R'p,(E)) = w and h°(Z, Q) = z.

Remark 0.3. It follows from theorem 0.2 that the strata defined in [BG]
for spaces of bundles on the blow-up of C? are all non-empty. We give also

the following characterization of the split bundle.
Proposition 0.4. Let E be a rank 2 vector bundle on U with splitting

type (4, —j +€) with j > 0 and e = 0 or —1. The following conditions are
equivalent:



(i) E ~ Oy(—jD) ® Oy((j +e)D)
(i1) ca(E) — ca(p«(E)YY) = j(j +€)
(i) h°(Z, R'p.(E)) = j(j — 1)/2

(iv) E has associated sequence {(ai, b;)},1 <i<j—e withb; = —j—e+i—1
for every i.

We now consider a compact complex smooth surface S, so that we can
calculate second chern classes. If F is a rank 2 bundle defined on the blow-
up of S at a point, then the difference of second Chern classes satisfies j <
co(E) — ca(p«(E)VV) < 52 and is given by the sum h°(Z, R'p.(E)) + h%(Z, Q)
(see [FM]). Sharpness of these bounds was proven in [B] and in [G2] by
different methods. We prove the following existence theorem.

Theorem 0.5.Let S be the blow-up of a compact complex smooth surface S
at a point. Let | denote the exceptional divisor and let j be a non-negative
integer. Then for every integer k satisfying 7 < k < j? there exists a rank
2 vector bundle E over S with E|l ~ O)(j) & O)(—j) satisfying co(E) —
ca(p«(E)"Y) = k.

Note 0.6: In [G1, Thm. 3.5] it is shown that the number of moduli for the
space of rank-2 bundles on the blow up of C? at the origin with splitting type
j equals 25 — 3; and since such bundles are determined by their restriction
to a formal neighborhood of the exceptional divisor it follows that we have
the same number of moduli for bundles over the neighborhood U of an ex-
ceptional curve on a surface W. These results are proven in section 1, where
we also review the construction of admissible sequences. On section 2 we
consider briefly bundles of higher rank.

2 Rank 2 bundles

We briefly recall the construction of the associated sequences of pairs of
bundles and splitting types given in the introduction of [B]. We first give
the definitions of positive and negative elementary transformations. Let E
be a rank 2 vector bundle on W with splitting type (a,b) with @ > b. Fix



a line bundle R on D and a surjection r: ¥ — R induced by a surjection
p: E|p — R. There exists such a surjection if and only if deg(R) > b. If
deg(R) = b < a, then p is unique, up to a multiplicative constant. Set
E':= ker(r) and R':= ker(p). If deg(R) = b < a the sheaf E’ is uniquely
determined, up to isomorphism. Since D is a Cartier divisor, E’ is a vector
bundle on U. We will say that £’ is the bundle obtained from E by making
the negative elementary transformation induced by r. Note that R’ is a line
bundle on D with degree deg(R') = a+b— deg(R). Since deg(I/I?) =1 it is
easy to check that deg(E'|p) = a + b+ 1 and we have the exact sequence

0 — Op(1+deg(R)) — E'|D - R — 0. (1)

Furthermore, using this exact sequence we obtain a surjection ¢: ' — R’
such that ker(t) ~ E(—D). In particular ker(t)|p ~ Op(a+ 1) ® Op(b+ 1).
Thus, up to twisting by Oy (—D), the negative elementary transformation
induced by r has an inverse operation and we will say that F is obtained
from E ’ making a positive elementary transformation supported by D. The
following diagram, called the display of the elementary transformation, sum-
marizes the construction (see [M]).

0 0
) )
0 — R — Ep S R — 0
t1 0 |
0 — F — E - R — 0
) )
E(-D) = E(-D)
) )
0 0

Given two vector bundles E; and E, with splitting types (a;,b) and
(ag, by) we say that E; is more balanced then Ey ifa; — by < as — by. Given a
vector bundles E with splitting type (a, b) we say that E is balanced if either
a = b (case c; even) or else a = b+ 1 (case ¢; odd). Performing negative
elementary transformations we will take the bundle E into more balanced
bundles. The sequence of elementary transformations finishes when we arrive
at a balanced bundle. If deg(R) = b, then E’|p fits in the exact sequence

0—Op(b+1)— E'|D— Op(a) — 0. (2)

4



If b < a then E' is more balanced than E. If b = a — 3, then (2) does not
uniquely determine E'|¢. If b = a — 2 and E’ is not balanced, we reiterate
the construction starting from E’ taking R’ to be the factor of E'| D of lowest
degree and we take the unique surjection (up to a multiplicative constant)
P E'"— R'. In a finite number, say, ¢t — 1, of steps, we send F into a bundle
which, up to twisting by Oy (sD), where s = (a + b+t — 1)/2 has trivial
restriction to D. The process ends with a bundle isomorphic to Oy (sD)®?
(see [B], Remark 0.1).

We now construct the admissible sequence associated to E. Step one: set
Fi:=FE, a;:= a and b;:= b. If a; = by, set t = 1 and stop. Otherwise
a; > by. Step two: in the case a; > by set Ey := E' and let (a9, by) be the
splitting type of E'. Note that ay + by = a; + by + 1 and by < by = ay = ay.
Hence ay — by < a; — by and F5 is more balanced than Ei. If ay = by, set
t := 2 and stop. If as > b, reiterate the construction. Final step: in a finite
number of steps (say ¢ — 1 steps) we arrive at a bundle E; with splitting
type (a¢, by) with a; = by. Call E;,2 < i < t, the bundle obtained after i — 1
steps and let (a;, b;) be the splitting type of F;. The finite sequence of pairs
{(ai, b;)},1 < i <t obtained in this way has the following properties:

(i) a; > bVi > 0,
(i) a; + b = a1 + by + i — 1V > 1,

(iii) @; > a; +1>b; +1 > b;,Vi > 1, and
(

iV) ay = bt.

We call admissible any such finite sequence of pairs of integers. We will
say that a sequence {(a;,b;)},1 < i <t is the admissible sequence associated
to the bundle E if this sequence is created by the algorithm just described.
By [B] Th. 0.2, every admissible sequence is associated to a rank 2 vector
bundle on W.

Examples: Let us first set some notation. To represent the admissible
sequence {(a;, b;)},1 < i <t, we write

(al,bl) — (ag,bg) — s = (at,bt).

1. If the splitting type of F is (b+ 2, b) then there is only one possibility for
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the admissible sequence associated to E, namely
b+2,0) > (b+2,b+1)— (b+2,b+2).

2. If the splitting type of E is (b+4, b) then there are 3 different possibilities
for admissible sequences associated to E (which in particular will give rise
to different values of the numerical invariants (z,w)), these are:

i.(b+4,0) > (b+4,0+1) = (b+4,6+2) > (b+4,0+3)— (b+4,b+4)
i.(b+4,0) = (b+4,0+1) — (b+3,b+3)
ii.(b+4,b) - (b+3,6+2) — (b+3,b+3)

We now calculate the numerical invariants of £ in terms of admissible
sequences. For every integer n > 0 let D™ be the n-th infinitesimal neigh-
borhood of D in U. Hence D™ is the closed subscheme of U with I"*! as

ideal sheaf. In particular, D©® = D and D) = D for every n > 0. For each
integer n > 0 the following sequence is exact

0— I"/I"" — Oy /I" — Oy /I — 0. (3)

Suppose that E is a vector bundle normalized to have splitting type (j, —j+e€)
where 7 > 1 and either e = 0 or e = —1. We denote by m be the maximal
ideal of Oy p. Consider the inclusion j : p.(E) — p.(E)"Y and let Q:=
coker(j), z:= h%(Z,Q), and w:= h°(Z, R'p.(E)). Call Op(zx) the degree z
line bundle on D. Twisting the exact sequence (3) by E and using the fact
that I"/I""! has degree n, we obtain the exact sequence

0= Op(j+n)— Op(—j+e+n)— E|p(n) = Elp(n—1) = 0. (4)

Lemma 1.1. The integers z and w satisfy the inequalities:
1<2<j(+1)/2

and
j-1<w<j(G—1)/2—ej



Proof. By the Theorem on Formal Functions we have the bounds for z and
we have that

w=>Y h'(D,Op(—j+e+n)) =4 —1)/2—ej.

n>0

The upper bound for w + z was stated in [FM] Remark 2.8, and proven
for bundles with arbitrary rank in [Bu] Prop.2.8. Consequently we have an
alternative proof of the upper bound for z. The lower bound for w will be
proven in Remark 1.4. For the case of rank two and e = 0 [G2] shows that
these bounds are sharp. Since () is a quotient of (9,62213 the dimension of the
fiber of () at P is either 1 or 2. The sheaf () is isomorphic to the structure
sheaf of a subscheme of Z supported by P and with length z if and only if
the dimension of this fiber is 1. We will check that this is always true (see
Proposition 1.3). We first check the split case.

Lemma 1.2.Suppose that E ~ Oy(—jD) ® Oy((j — e)D) then we have
z=730G+1)/2,w =34 —1)/2—ej and Q is isomorphic to the structure
sheaf of a subscheme of Z supported by P and with m’ as ideal sheaf.

Proof. Since D is an exceptional divisor, we have p,(Oy((j — e)D)) =
p.(Oy) = Oz for every j = e and p,(Oy(—jD)) ~ m’ if j > 0.

Proposition 1.3. Let E be a rank 2 vector bundle on W having splitting
type (J, —j +e) with j > 0. Then @ is isomorphic to the structure sheaf of a
length z subscheme Q of Z with Qreq = P and Q C PU~Y.

Proof of 1.3. The first assertion is well-known and follows from the proof
of Lemma 1.2. Since @ is a quotient of OZ%2, in order to prove the second
assertion it is sufficient to check that its fiber at P is a 1-dimensional vector
space. Since E has splitting type (j, —j + €), we have an extension

0= Opy((—j+e)D) — E — Oy(jD) — 0. (5)

([BG] Lemma 1.2, or in [G1] Thm. 2.1 in the case e = 0). Call e the extension
(5) giving E. For each t € K — 0 consider the extension of Oy(jD) by
Ou((—7 + e)D) given by extension class te, this extension has as middle
term a vector bundle isomorphic to F. Using the extension e for ¢ = 0, we
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construct a family {\e} cx of extensions. We call E, the corresponding
middle term and (), the corresponding sheaf. Since F) ~ FE for A # 0, we
have @) = @ for X\ # 0, and because Ey ~ Ow (jD) ® Ow ((—j + €)D), we
have that Qo = PU~1), and the result follows by semi-continuity of the fiber
dimension at P.

Proof of 0.1. Given the admissible sequence of splitting types {(a;, b;) }1<i<
associated to E we want to show that

w:=h"(Z,R'p.(E)) = > maz{-b; — 1,0}

1<i<t

and
z:=h"(Z,Q)= > ai—a; — > maz{-b — 1,0}
1<i<t 1<i<t

We use induction on ¢, the case t = 1 arising if and only if a; = b;, equiv-
alently, when E ~ Oy (—a; D)% (this follows immediately from the def-
inition of admissible sequence). Since R'p,(Ow(zD)) = 0,Vz < 1 and
R'p,(Ow(yD)) = y(y — 1)/2, Yy > 0, we have the equality for w in the
split case. Assume ¢t > 2. By the definition of the sequence {E;},1 < i <t
associated to E we have that 4, = F and there is an exact sequence

0— E2 — E1 — OD(—le) — 0. (6)

First assume b; < 0, in which case we have that h°(Z,p,(Op(=bD))) =
0 and A°(Z, R'p,(Ow(=bD))) = —b; — 1. Hence w:= h°(Z, R'p.(F)) =
h%(Z, R'p.(E5))—b,+1 and since Fy has {(a;11,bi11)},1 < ¢ < t as admissible
sequence, the claim follows.

Now assume b; > 0, from the exact sequence (6) it follows that

hO(Za Rlp*(E)) < hO(Za Rlp*(EZ))'

Since b; > by for every i > 1, we have h°(Z, R'p,(E,)) = 0. Hence, by the
inductive assumption on the length of the admissible sequence, it follows that
h°(Z, R'p.(E)) = 0, proving the first assertion. The value of z:= h°(Z, Q)
comes from the equalities

c2(E) — ca(po(E)Y) = Y a;—af

1<i<t



and
¢2(E) = eo(p(E)"Y) = h°(Z,Q) + h°(Z, R'p.(E))

proved in [B, Th. 0.3] and in [FM] respectively. Here, of course, we assume
that F is extended to a compactification, however these integers do not
depend upon the choices of compactification and of extension of E.

Proof of 0.2. By [B] Th. 0.2 every admissible sequence (a;,b;) is associ-
ated to a rank two bundle E on W, moreover, the intermediate steps of the
construction of F give bundles E; with splitting types (aj;, b;) for each i. Now
use Th. 0.1 to calculate z and w.

Remark 1.4. If we assume that F has splitting type (j, —j+e) with j > 1+e,
then because by = —j + e, we obtain w > j — 1 —e.

Proof of 0.4. By [B] Th. 0.5 we know that (i) and (ii) are equivalent. By
Lemma 1.2 (i) implies (iv). Since by = —j + e, and b; > b; — 1 holds Vi > 1,
and since a; = j, and a;+b; = e+i—1 holds Vi > 1; it follows from Theorem
0.1 that (iv) implies (ii).

Proof of 0.5. Given bundles G on S and F on W with ¢;(G) = 0 = ¢, (F)
there exists a bundle £ on S satisfying E|s_; = p.E|s_gp and E|w = F' (see
[G3] Cor. 3.4).It then follows that co(E) — ca(p«(E)¥Y) = R'p.(F) + 1(Q)
and the result follows from Th. 0.2.

3 Bundles of higher rank

In this section we consider vector bundles with rank r > 3. Fix a rank r
vector bundle E on U. We use the notation of [B] for the admissible sequence
{E;},1 < i <t of vector bundles associated to E. In particular we denote by
(a(i,1),...,a(i,r)) the splitting type of E; where a(i,1) > --- > a(i,r). We
make the strong assumption that a(i,7 — 1) > —1 for every ¢ and compute
h(Z, R'p.(E)).

Proposition 2.1. Let E be a rank r vector bundle on W whose associ-
ated sequence of vector bundles { E;} has splitting type (a(i, 1), ..., a(i, 7)) with



a(i,r —1) > —1, for all i 1 <1i <t. Then we have

h(Z,R'p.(E)) = Y min{—a(r,i) — 1,0}.

1<i<t

Proof. We first observe that the proof of the corresponding inequality
for rank 2 bundles works verbatim (both cases ¢t = 1 and ¢ > 1), be-
cause, for each ¢ with 1 < ¢ < t at most one of the integers a(i,j) is
not at least -1 and A!'(P!,L) = 0 for every line bundle L on P! with
deg(L) > —1. In the case r > 3, the sequence of elementary transforma-
tions made to balance the bundle is not, a priori, uniquely determined,
and hence the sequence of associated bundles is not uniquely determined
by E. The condition a(1,r — 1) > —1 implies that there is an associated
sequence in which we make always an elementary transformation with re-
spect to Op(a(r,i)) to pass from E; to E;;; for some a(r,i) < —1 (which
gives that h®(Z, R'p,(E7)) = h%(Z,R'p.(Ei + 1)) — a(r,i) + 1). We con-
tinue to perform elementary transformations until we arrive at an integer
m < t such that a(m, j) > —1 for every 4. It is then quite easy to check that
h%(Z, R'p,(Em)) = 0 and the result follows.

In the general case the same method gives the following partial result.

Proposition 2.2. Let F be a rank r vector bundle on W whose associated
sequence {F;},1 < i <t of vector bundles has splitting type (a(i, 1), ..., a(i, 7))
with 1 <1 <t. Then we have

R’(Z, R'p.(E)) = Z min{—a(j,i) — 1,0}.

1 t
1
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