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Abstract

In this paper we study holomorphic rank two vector bundles on
the blow up of C? with vanishing Chern class. The restriction of such
a bundle over the exceptional divisor splits as O(j) & O(—j) for some
integer j. We denote by M the moduli space of holomorphic bundles
on the blow up of C? whose restriction to the exceptional divisor is
O(j) ® O(—j). We prove that M; is generically a complex projective
space of dimension 25 — 3.

1 Introduction

Holomorphic vector bundles over complex surfaces have been extensively
studied by several different methods. See for example the books of Kobayashi
[9], Okonek, Schneider, Spindler [10] and Donaldson, Kronheimer [2]. A fun-
damental result on the classification of rational surfaces is: “Every rational
surface is obtained by blowing up points on either P? or on a rational ruled
surface” (see Griffiths and Harris [6]). This result suggests that the under-
standing of vector bundles on rational surfaces depends on the analysis of
the behavior of vector bundles under blow-ups.

Some works on holomorphic bundles on blow-ups are the papers by Freed-
man and Morgan [3][4], Brussee [1], and Qin [11]. Roughly speaking we may
see the “difference” between moduli spaces of bundles on a rational surface
and moduli spaces of bundles on one of its minimal models by studying bun-
dles on the blow up of C2. In this work we concentrate on the study of bundles
on blow-ups in the local sense, that is in a neighborhood of the exceptional
divisor. Our approach is quite concrete, as we give bundles explictly by their
transition matrices and present the moduli spaces as quotients of C™ by an
equivalence relation.



1.1 Statement of Results

We use the following notations:

C? = the blow up of C? at the origin
¢ = the exceptional divisor

E, = restriction of the bundle F to 4.

Since we consider rank two bundles with zero first Chern class we must
have E; = O(j) ® O(—j) for some integer j, by Grothendieck’s theorem.

Definition: M is defined as the moduli space of bundles on C? which
restrict to O(j) @ O(—j) over the exceptional divisor.

For a bundle in M we give a canonical form of transition matrix, from which
we have two immediate corollaries.

Corollary 2.3: Mg consists of a single point.
Corollary 2.5: M, consists of a single point.
Our main results are:

Theorem 3.4: The moduli space My is homeomorphic to the union P! U
{p, q}, of a complex projective plane P! and two points, with a basis of open
sets given by

UU{p,U:Ueld—-o¢}U{p,qU:U€clU— ¢}

where U 1is a basis for the standard topology of P!.

Theorem 3.5: The generic set of the moduli space M is a complex projec-
tive space of dimension 2j — 3 (minus a closed subvariety of complex codi-
mension bigger than or equal to two).

Remark: The moduli space M; also contains complex projective spaces
of every dimension smaller than 25 — 3, each one deleted of some closed
subvariety.

Remark: M; is not Hausdorff. For example, the direct sum bundle given

J
by (% ZQJ) is “arbitrarily close” to any other bundle.



2 The canonical form of transition matrix

We write C2 = U UV, where U = C? = {(z,u)}, V = C2 = {(§,v)},
UNV = (C—-{0}) x C with the change of coordinates (£,v) = (27}, zu).
Naturally, we first look at line bundles. It turns out that holomorphic line
bundles on C? are classified by their Chern classes. This can be easily seen
using the exponential sheaf sequence and the fact that H'(O(-1),0) = 0.
For rank two bundles with coordinate charts U and V as above we give a
canonical form of transition matrix.

Theorem 2.1 : Let E be a holomorphic bundle on C? satisfying E, ~
O(j) ® O(—j). Then E has a transition matriz of the form

(5 2)
0 z79

from U to V, where

2j—2 j—1
_ .3
p=> > paru.
i=1 l=i—j+1

In particular the bundle E is algebraic.

Proof: Because E, >~ O(j) ® O(—j), a transition matrix for E from U to V

takes the form )
T— (zj + ua uc >
- ud 279 +ub

where a, b, ¢, and d are holomorphic functions in U N V. In order to obtain
the desired form of the matrix, we change coordinates three times as follows.
Step 1. Shows E' is an extension using the change of coordinates

(1 0) <Zj+ua uc )(1 0)
n 1 ud 29 4+ub)\E 1)°

Step IL. Shows 0 — O'(—j) — E — O'(j) — 0 is exact using the change of

coordinates ,
(771 0)(23+ua uc )(51 O)
0 1m0 0 z7+ub)\0 &)



Step III. Finds the formula for the polynomial p using the coordinate change

b DG 26

In each of these Steps the &’s and the n’s are holomorphic functions in U and
V respectively. All three steps use the same technique, so it is enough to see
the detailed proof of Step 1, which follows.

Proof of Step I: As indicated above, in this Step we perform the coordinate

changes '
(1 O) (zj—i-ua uc )(1 0)
n 1 ud 2 4+ub)\E 1)

After this multiplication the entry e(2, 1) of the resulting matrix is
e(2,1) = n(27 + ua) + ud + [pue + (277 + ub)] €.

The term independent of u in e(2,1) is no(z ') 27 + &(2) z77. Choosing
no(z7Y) = —277 and &(z) = 27 we cancel this term and e(2,1) becomes
a multiple of u.

Inductively, assume that the values of g, 71, ...,7n—1 and &g, &1, -, Ent
have been chosen so that they cancel the coefficients of u°, u!,..u""! in the
expression for e(2,1). The coefficient of u™ in the expression for e(2,1) is

Na(z71) 22T + Z Em(2) bi(2, 27 1) + ®"(2,27 1),

m+i=n

where ®"(z,z71) is a holomorphic function on z and z~!. We separate ®"
into " = ®%;+ O, where O% is the part of ®" containing the non-negative
powers of z and @7 is the part of ®" containing the negative powers of z.
We then choose the values of 7, and &, as n, = 27"7/®%; and &, = z]@go.
These choices cancel the coefficient of u” in the expression for e(2,1). B

Remark: In [8] J. Hurtubise finds a similar form of transition matrix
for bundles on a product P! x U where U in an open set in C, using
Grothendieck’s Theorem on Formal Functions. A similar approach does not
work in our case, as it depends on the vanishing of a cohomology group,
which does not happen on the blow up. However, it is possible to prove
Hurtubise’s Theorem for bundles on P! x U using our method of coordinate
changes.



2.1 The moduli spaces M, and M;

It turns out that for each of the cases 7 = 0 and j = 1 there is only one
possible bundle up to isomorphism.

Corollary 2.2 : A holomorphic rank two vector bundle E on C? which is
trivial when restricted to the exceptional divisor is trivial on C2.

Proof: Let j = 0 in Theorem 3. Then p = 2;221 El;li puztu’ = 0 and the
transition matrix for E is the identity. [ |
We may restate this as:

Corollary 2.3 :M; consists of a single point.

Corollary 2.4 : A holomorphic rank two vector bundle E on C2 which has
the restriction E, ~ O(1) @ O(—1) splits into a sum of line bundles.

Proof: Let j = 1 in Theorem 2. Then p = Y9, 3%  pyz'u’ = 0 and the

transition matrix for E is (Z (_)1> . I
0 =z

We restate the previous Corollary as

Corollary 2.5 : M; consists of a single point.

3 The moduli spaces M,

Next we investigate when two distinct transition matrices from Theorem 3
give holomorphically equivalent vector bundles.

Lemma 3.1 : If p' = Ap for some X\ € C — {0}, then the matrices

2 p 2y )
( 0 zj> and ( 0 =z
give holomorphically equivalent vector bundles.

Proof: Just write down the isomorphism as

(5 2)=(6 o) (G 2) 6 %), I



To see that the value A = 0 must indeed be excluded from the above propo-
sition we have the

Example: The holomorphic bundles £ and F', given by transition matrices

22 2u? 22 0

0 2) M (o -2
respectively are not holomorphically equivalent. In other words, the bundle
E does not split.

Recall that if Y is a closed subvariety of a variety X, defined by the sheaf
of ideals Z, then the n-th formal neighborhood of Y in X is the quotient
Ox /I™. To simplify the notation we will write our polynomial p as p =
p1+ D2+ -+ + p2j_a wWhere p; is the term in u’.

Proposition 3.2 : On the first formal neighborhood, two bundles EV) and
EW" with transition matrices

2 p1> (Zj pi)
(0 2z d and 0 2z

respectively are isomorphic if and only if p| = Ap1 for some A € C — {0}.

Proof: The if part follows from Lemma 5. Now suppose E() and E(/
are isomorphic. According to our notation we have p; = E{:—Ql_j puztu and

Py = 2{2—21_ ; p,2'u. We will write the isomorphism in the form

(5 2)C D=0 DG »)
0 z7)\e d) \v § 0 z7)°
where a, b, ¢, and d are holomorphic in U, and «, 3, v, and § are holomor-

phic in V. On the first formal neighborhood, this yelds the following set of
equations

= (ao(z™") +ai(z7!)zu) &

(70(27") +m(27")2u) 27 .
= ag(z " )pr + (Bo(z7h) + Ai((z71)2u) 277
= Y Hp+ (6(z7") +61(z71)z2u) 277,
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Recalling that p; and p| are multiples of v and equating terms that are
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independent of v in (1) and (4) gives ag(z) = ag(z7!) and dy(z) = do(z71)
respectively. Therefore ag, gy, dg, and 0y are constants and ag = o and
do = 0p. Next we equate terms in u in equation (3), obtaining

bi(2)u 2 + pido = aopr + 51(2_1)U z7,

which forces b; and ; to vanish. Equation (3) now becomes pidy = aop:
and we observe that p; and p} differ by a constant.

It remains to show that dy and o are nonzero. Taking terms that are
independent of u in equation (3) we have by(z)z? = Fy(277)z~7, which im-
plies bo(z) = Bo(27') = 0. It follows that over the exceptional divisor our
coordinate change has determinant ady, hence aydy = agdy # 0 [ |

3.1 The moduli space M

In the particular case when j = 2 our polinomial is p = (p1g+p112)u+ P21 2u>.
We want to define a topology in My which is in2 some sense natural. For this
we define a function ® : My — C3/ ~ by ('ZO z€2> — (p10, P11, p21). To
make ® a well defined function we need the appropriate equivalence relation
~ which is given by:

1) {(p10, P11, P21) ~ (Ap10;, AP11, P51) } if (Pro,P11) # (0,0), A#0

11) {(07 07p12) ~ (Oa 07 Apl?)}a A 7é 0.

Proposition 3.3 : The map ® : My — C3/ ~ is a bijection.

Proof: We show that ® is well defined. It is then easy to see that it is a
bijection. Suppose we have isomorphic bundles with correponding polyno-
mials p = (p1o + p112)u + porzu? and p’' = (pl, + piy2)u + phzu?. Based on
Proposition 3.2, we know that p| and p; differ by a constant dop] = a,p:-
Without loss of generality we may assume ag = dy = 1 and consider p ~ Ap,
for A # 0. We write the isomorphism in the form

(3 9-G B¢ a6 )

. (a +z2 %pc 2+ 22(p'd — ap) — pp’c)
- 274 d— z2pc ’



1

b) is holomorphicin z, v and (?; b > is holomorphicin 27, zu.

a
where (C d 5

We need to analyze what contraints this puts on p,; and ph,. To begin with
it follows that ¢ = ¥, <4 cirz'u* with i,k both > 0. Now looking at the
(1,1) term we have that o = a + z~2p'c must be holomorphic in 27", zu.
This means that the coefficients of a must be chosen to cancel out in the
expression for o all elements having z*u’/ with ¢ > j. Writing a in power
series a(z,u) = 372 X2, ajiz'u! and plugging into the equation for @ we
obtain the following constraints for a

<a12> _ (pn p10> (003)

a3 0 pu/ \cos

(a23):_<p11 p10>(014)_<p'21>(c )
(24 0 pn/ \as 0 o

and other equations for the coefficients of u?, u? ... .
Using term (2,2) we get analogous equations for d, namely, if d(z,u) =

120 2 =0 djiz'u?, then
<d12> _ (pll p10) <CO3>
d13 0 bn Co4

da3 P11 Pio C14 b2
<d24> B ( 0 p11) <C15) * ( 0 ) (004)
and other equations for the coefficients of u?, u* ... .

Looking at the (1,2) term we have that 3 = 2%b + 2%(p'd — ap) — ppc is
holomorphic in 27!, zu. This means 3 has only terms z'u* for i < k. We can
ignore terms involving 2* for ¢ > 4 since z*b is available to remove them. So,
to eliminate terms with z'u* for ¢ > k& we only need to consider the equation
in terms up to u2. This imposes only the condition that the terms in u
and u? in the expression 2?(p'd — ap) — pp'c be holomorphic in 27!, zu. But
the u-coefficient vanishes, so we only need to impose the condition that the
coefficient of z2u? be equal to zero, namely

(p/21 - p21) - pfocos — 2p1op11Co2 — p%1001 + P1o (dn - an) +p11(d10 - a10) =0.

If p1o + p11z # 0 the equation can be solved for any values of py; and pi,

by choosing appropriate values of ajp and ay;, and we get relation i). If

P1o + p11z = 0 the equation implies py; = ph;, and we get relation ii). [ |
We now give Mj the topology induced from the correpondence ®.
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Theorem 3.4 : The moduli space My is homeomorphic to the union P U
{p, q}, of a complex projective plane P! and two points, with a basis of open
sets given by

UU{p,U:Ueld—-o¢}U{p,qU:UeclU— ¢}
where U 1is a basis for the standard topology of P!.

Proof: Take the topology on Mj induced by . [ |

Note that the moduli space M, is not Hausdorff. Intuitively we can say that
the direct sum bundle O(j) & O(—j) is “arbitrarily close” to any bundle on
M. The same statement holds if we replace the direct sum bundle by a bun-
22 Azu?
0 z2
of the moduli space M3 appears in [5].

dle given by transition matrix ( ) . A similar detailed description

3.2 The moduli space M;

Theorem 3.5 The generic set of the moduli space M; is a complex projec-
tive space of dimension 25 —3 minus a closed subvariety of complex codimen-
ston bigger than or equal to two.

Idea of the Proof: We define a function M — C¥/ ~ by the rule
(ZOJ ZZEJ) — (P—jt2,1;P—j+3,1; -3 Pj—1,2j—2), Where the right side are just
the coefficients of p. Generically, the restriction of our polinomial to the first
formal neighborhood is nonzero. By tedious calculations similar to the ones
in Proposition 3.3 one shows that in this case the higher formal neighbor-
hoods are neglectable (except in a subset of codimension at least two). In
the first formal neighborhood p; has 25 — 2 coefficients and from Proposition
3.2 we have the relation p; ~ Ap; which gives us the projective space of
dimension 2 — 3. |

Remark: The moduli space M; also contains complex projective spaces of
every dimension smaller than 25 —3, minus some closed subvariety. Projective
spaces of dimension 2j — 3 — 4 appear from bundles which corresponding
polynomial vanish up to the i-th formal neighborhood.



Remark: If we give M, the topology induced from CV, then M; is not
Hausdorff. For example, the bundle O(j) & O(—j) is “arbitrarily close” to
any other bundle in M.
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