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Abstract

Let S be a ruled surface inside a smooth threefold W and let E be
a vector bundle on a formal neighborhood of S. We find minimal con-
ditions under which the local moduli space of E is finite dimensional
and smooth. Moreover, we show that E is a flat limit of a flat family
of vector bundles whose general element we describe explicitly.

1 Introduction

Consider the general question: how do moduli spaces of vector bundles
change under birational transformations of the base? In this paper, we take
the first steps of a program to study this question for threefolds. In dimension
three, flops give essential examples of birational transformations.

We first recall the definition of the basic flop. Let X be the cone over the
ordinary double point defined by the equation xy− zw = 0 on C4. The basic
flop is described by the diagram:

X̃
f1↙ ↘f2

X1 X2

π1↘ ↙π2

X

where X̃: = X̃x,y,z,w is the blow up of X at the vertex x = y = z = w = 0,

X1: = X̃x,z is the blow up of X along x = z = 0 and X2: = X̃y,w is the blow
up of X along y = w = 0. The basic flop is the transformation from X1 to X2.
The spaces appearing in this diagram are not compact, but they do contain
neighborhoods of compact curves. We wish to find what vector bundles
fit over this diagram, together with their local deformations. Note that on
the given diagram, the spaces X1 and X2 are both abstractly isomorphic to
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OP1(−1)⊕OP1(−1), although the maps π1 and π2 are distinct; whereas X̃ is
isomorphic to OP1×P1(−1,−1),

We generalize the situation of X̃ slightly by considering a ruled surface
S with negative normal bundle inside a smooth threefold. We then study
bundles E on a formal neighborhood Ŝ of S and their local moduli spaces
(cf. definition ??). In the case of a Hirzebruch surface S, we require that
E|S be simple. When S is ruled over a curve C of genus greater than 1, we
assume that E|S is R–stable with respect to a good polarization R of S (cf.
definition ??).

These conditions are minimal in the following sense. The local moduli
space of a simple bundle is unobstructed, and therefore smooth (cf. remark
??). Hence to have smoothness it would be desirable to impose the condition
that E be simple. However, as an easy argument in section 3 shows, there
are no simple bundles on Ŝ. The alternative is to impose a condition on the
restriction of E to an infinitesimal neighborhood of S. We choose the zero-th
formal neighborhood. We have the following results.

Theorem A Let S be a Hirzebruch surface with negative normal bundle
inside a smooth threefold. Let E = {En} be a vector bundle on Ŝ such that
E|S is simple. Then the local moduli space of E is finite dimensional and

smooth. Moreover, E is a flat limit of a flat family of vector bundles on Ŝ
satisfying properties (ι) and (ιι) below.

Theorem B Let S be a ruled surface with negative normal bundle inside a
smooth threefold, so that S is ruled over a curve of positive genus. Fix a good
polarization R on S. Let E = {En} be a vector bundle on Ŝ such that E|S is
R–stable. Then the local moduli space of E is finite dimensional and smooth.
Moreover, E is a flat limit of a flat family of vector bundles on Ŝ satisfying
properties (ι) and (ιι) below.

Let r: = rank(E) and d: = deg(E). The general element G = {Gn} of the
family has the following behavior.

(ι) If d = ar − x, 0 < x < r, then the general element G of the family is
a vector bundle such that the restriction of G1 to a general fiber D of u has
splitting type (a, · · · , a, a− 1, · · · , a− 1), and in this case

G| bD ' O bD(a)⊕(r−x) ⊕O bD(a− 1)⊕x.
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(ιι) If d = ra, then the general element G of the family is a vector bundle
such that the restriction of G1 to a general fiber D of u has splitting type
(a, · · · , a) and in this case

G| bD ' O bD(a)⊕r

but there exists a finite number of jumping fibers D′ where G|D′ has splitting
type (a + 1, a, ..., a, a− 1).

For a bundle over a Hirzebruch surface we calculate the number of such
jumping fibers.

Theorem C Let z be number of jumping fibers of G. Set E = G(−ah) and
m: = deg(u∗E). Then

z = c2(E) = c2(G)− a(r − 1)c1(G) · h− ea2r(r − 1)/2

and
m = c1(u∗E) = −z + c1(G) · h + rae.

In section 2 we recall some basic concepts of deformation theory. In section
3 we consider bundles on a neighborhood of a Hirzebruch surface and prove
Theorems A and C. In section 4 we consider bundles on a neighborhood of a
surface ruled over a curve of higher genus and prove Theorem B.

2 Background material on deformations

In this paper we work only over C. The basic material on the deformation
theory appearing in this section is taken from Seshadri [?]. Let X be a
scheme over and algebraically closed field k. Let R be a complete local ring
such that R/mR = k, mR the maximal ideal of R and Rn = R/mn

R.

Definition 2.1 A deformation Y of X parametrized by a scheme T with
base point t0 consists of

1. a morphism Y → T which is flat and of finite type

2. a closed point t0 ∈ T, and an isomorphism Yt0
∼→ X, where Yt0 =

Y ×T k(t0) is the fiber over t0.

3



Definition 2.2 A formal deformation XR of X is a sequence {Xn} such
that

1. Xn = XRn where XRn is a deformation of X over Rn

2. we are given a compatible sequence of isomorphisms Xn ⊗Rn Rn−1 →
Xn−1 for any n.

Definition 2.3 Let A be a finite dimensional local k-algebra. Then, giving
a k-algebra homomorphism φ: R → A is equivalent to giving a compatible
sequence of homomorphisms φn: Rn → A for n >> 0. It follows that, given a
formal deformation XR of X and a homomorphism φ: R → A, Xn ⊗Rn A is
the same up to isomorphisms for n >> 0. We define this to be XR⊗A. It is a
deformation of X over A, called the base change of XR by Spec A → Spec X.

Definition 2.4 Let F and G be the functors defined by

1. F (A) = isomorphism classes of deformations XA over A

2. G(A) = Homk(R,A).

We get a morphism of functors j: G → F defined by φ ∈ Homk(R,A) 7→
XR ⊗ A. A formal deformation XR of X is said to be versal if the functor j
is formally smooth. ([?] p.271)

More generally, one can define similarly the concept of versal deformation
for a covariant functor F with F (k) = a single point. Schlessinger gave con-
ditions for the existence of versal deformations of a functor for F. Moreover,
Artin’s algebraization theorem says that Schlessinger’s conditions together
with effectiveness imply the existence of an algebraic deformation space for
F. For details see [?] and [?] .

Remark 2.5 In the case of deformations of X algebraization means that
there exists a scheme Y over S flat and of finite type, with base point s0

such that ÔS,s0 = R and Y ⊗Rn = Xn. The conditions for algebraization are
satisfied for deformations of vector bundles over a complete algebraic scheme
(see [?] thm 2.3).

Definition 2.6 The germ of Y at s0 ∈ S is determined up to isomorphism
and we call it the local moduli space of X. (Here germ means Spf OY,s0 ,
i.e. a compatible sequence of spectra of rings over Artinian rings). When a
deformation of X is considered only on a germ at a point s0 we call it a local
deformation of X.
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In this paper we construct formal deformations of vector bundles. An
application of Artin’s algebraization theorem then implies the existence of
algebraic deformations. We restate definition 2.1 for the case of vector bun-
dles (definitions 2.2 and 2.4 can be repeated with E in place of X and E in
place of Y and we get the concepts of formal, versal and local deformations
as well as local moduli for vector bundles).

Definition 2.7 Let E be a vector bundle over a scheme X. A deformation
E of E parametrized by a scheme T with base point t0 consists of

1. a vector bundle E → X × T

2. a closed point t0 ∈ T, and an isomorphism E|X×t0
∼→ E.

Definition 2.8 Let XR = {Xn} be a formal deformation of X. A vector
bundle ER on XR is a compatible sequence of vector bundles on each Xn.
A deformation of ER is given by a compatible sequence of deformations for
each En.

Remark 2.9 We say that the local moduli space of E is smooth if the germ
of E at X × t0 is regular. In order to check that the local moduli space of
E is smooth it suffices to check formal smoothness (cf. [?] remark 2.4). Ob-
structions for smoothness are in H2(X, End(E)), and if this group vanishes,
we say that deformations of E are unobstructed. It follows that the criterion
for smoothness is that H2(X, End(E)) = 0.

3 Bundles on neighborhood of a Hirzebruch

surface

Let S be a ruled surface inside a smooth threefold W. Let V be either a
neighborhood of S in W in the smooth topology, or the germ of W around
S, and let Ŝ be the formal completion of S in V. In this section we consider the
case when S = Σe, e ≥ 0, is a Hirzebruch surface. If e = 0 then S ' P1 × P1

and hence the two projections f1: S → P1 (resp. f2: S → P1) on the first
(resp. second) factor define two rulings of S. We use only the first ruling and
set u: = f1. If e > 0, then the surface Σe has a unique ruling u: Σe → P1. Call
f any fiber of u. Let h be a section of u with minimal self-intersection. We
denote by f (resp. h) the class of f (resp. h) in Pic(S). Thus f and h form a
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basis for Pic(S) ' Z⊕Z and have intersection numbers h2 = −e, h·f = 1 and
f2 = 0. The canonical line bundle of S is isomorphic to OS(−2h− (e + 2)f).
Let t and s be the integers such that I/I2 ' OS(th + sf), where I is the
ideal defining V in W. We assume t > 0 and s > et, that is, we assume
that I/I2 is ample. For every integer n ≥ 1 we have In/In+1 ' Sn(I/I2) '
OS(nth + nsf). Thus h1(S, In/In+1) = h2(S, In/In+1) = 0 for all n ≥ 1.

The vector spaces of regular functions on V and of formal functions on
Ŝ are infinite dimensional. We consider vector bundles E = {En} on Ŝ such
that E|S is simple, that is, such that h0(S, End(E|S)) = 1. In other words, we
require h0(S, ad(E|S)) = 0. For all integers n ≥ 0 we have the exact sequence

0 → In/In+1 → OS(n+1) → OS(n) → 0 (1)

For every vector bundle E = {En} on Ŝ we have the exact sequences

0 → E0 ⊗ In/In+1 → En+1 → En → 0 (2)

obtained from (1) by tensoring with En+1. Take a vector bundle G = {Gn}
on Ŝ. For every integer n ≥ 0, set En = ad(Gn), where the ad and Hom
functors are computed with respect to OS(n). By the long exact sequence in
cohomology derived from (2) we see that the integer h0(S(n), ad(Gn)) goes
to infinity when n goes to infinity. Hence, there are no simple vector bundles
on Ŝ.

Lemma 3.1 Let E = {En} be a vector bundle on Ŝ such that E|S is simple.
Then for all integers n ≥ 1 we have h2(S(n), End(En)) = 0.

Proof. First assume n = 1. Since E|S is simple, we have h0(S, End(E|S) ⊗
OS(−2h− (e + 2)f)) = 0. By Serre duality

h0(S, End(E|S)⊗OS(−2h− (e + 2)f)) = h2(S, End(E|S)),

concluding the case n = 1. Now assume n ≥ 2 and that the result is true
for the integer n − 1, i.e. assume h2(S(n − 1), End(En−1)) = 0. Since
dimS(n) = 2 we have h3(S(n), A) = 0 for every coherent analytic sheaf
A on S(n). Using (2) for the integer n − 1 and the vector bundle End(En)
together with the inductive assumption, we see that h2(S(n), End(En)) = 0
if h2(S, End(E|S)⊗OS(nth + nsf)) = 0. By Serre duality we have

h2(S, End(E|S)⊗OS(nth + nsf)) =

h0(S, End(E|S)⊗OS(−(2 + nt)h− (2 + e + ns)f)) = 0.

6



Remark 3.2 If F is a vector bundle on S(n) such that h2(S(n), End(F )) =
0, then by Remark 2.8 the local moduli space of F is smooth and has dimen-
sion h1(S(n), End(F )).

Lemma 3.3 Let E = {En} be a vector bundle on Ŝ such that E|S is simple.
Then for all integers n ≥ 1 the restriction map

h1(S(n + 1), End(En+1)) → h1(S(n), End(En))

is surjective.

Proof. As in the proof of Lemma ?? we obtain h2(S, End(E|S)⊗In/In+1) = 0
for every integer n ≥ 1. The lemma follows from the cohomology exact
sequence of (2) with the bundle End(En) instead of En.

Lemma 3.4 Let E = {En} be a vector bundle on Ŝ such that E|S is simple.
Then there exists an integer x depending only on E|S such that for all integers
n ≥ x the restriction map

H1(S(n + 1), End(En+1)) → H1(S(n), End(En))

is bijective.

Proof. By Lemma ?? it suffices to show the existence of x such that for all
n ≥ x the restriction map H1(S(n + 1), End(En+1)) → H1(S(n), End(En))
is injective. Since I/I2 is ample there exists an integer x such that for all
integers y ≥ x we have H1(S, End(E|S) ⊗ Iy/Iy+1) = 0. Now injectivity
follows from the long exact sequence of (2) with End(En) in place of En.

Proposition 3.5 Let E = {En} be a vector bundle on Ŝ such that E|S is
simple. There exists an integer x such that n ≥ x implies that every local
deformation of En lifts to a local deformation of E.

Proof. By Schlessinger’s theorem, a hull exists for deformations of En, and
since by lemma ?? h2(S(n), End(En)) = 0, the hull is smooth. Hence it is the
formal spectrum of a formal power series ring Rn = C[[x1, · · · , xs]]. Similarly,
set Rn+1 = C[[y1, · · · , yr]] to be the formal power series ring corresponding
to En+1. By lemma ?? the map Rn+1 → Rn induces a bijection at tangent
level, and it follows from the formal inverse function theorem, that the local
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deformations of E(n + 1) and E(n) are isomorphic for all n ≥ x therefore
they determine a local deformation of E.

The following property of bundles on P1 is well known, but we were not able
to find it in the literature.

Lemma 3.6 Every vector bundle on P1 is the flat limit of a flat family of
rigid vector bundles.

Proof. Let 0 ≤ c < r be integers and let A = OP1(a)⊕(r−c) ⊕ OP1(a − 1)⊕c.
This is a rigid bundle. We show that all bundles on P1 with rank r and degree
ra− c deform to A. Fix any such bundle B with splitting type b1 ≥ · · · ≥ br;
we may assume br ≤ b1− 2, otherwise B = A. Set B′ =

⊕
bi≤a−1OP1(bi) and

B′′ =
⊕

bi>a−1OP1(bi). By Shatz [?] Proposition 1, there is an exact sequence

0 → B′ → A → B′′ → 0.

Call e the extension class of this sequence. For all nonzero scalars λ the
extension λe has A as middle term, whereas for λ = 0 the corresponding
extension has middle term B. This gives a flat specialization to B of a family
of vector bundles isomorphic to A.

Lemma 3.7 Let F be a simple rank r vector bundle on S. Fix a fiber D of
u. Then the local moduli space of the vector bundle F |D is smooth and of
dimension h1(S, End(F |D)). The local moduli space of F on S is smooth and
of dimension h1(S, End(F )).

Proof. Since dim(D) = 1, we have H2(S, End(F |D)) = 0 and hence the
local moduli space of the vector bundle F |D is smooth and of dimension
H1(S, End(F |D)). Consider the exact sequence

0 → End(F )(−D) → End(F ) → End(F |D) → 0. (3)

By Serre duality we have

h2(S, End(F )(−D)) = h0(S, End(F )(−D)⊗OS(−2h− (1 + e)f)).

Since h0(S, End(F )) = 1, we have that h0(End(F )(−D) ⊗ OS(−2h − (1 +
e)f)) = 0 and hence h2(End(F )(−D)) = 0. It follows that h2(S, End(F )) =
0, we obtain the result for the local moduli space of F.

The following observation was inspired by [?] Lemmas 2 and 3, and their use
in [?].

8



Proposition 3.8 Lef F be a simple vector bundle on S. Then F is a flat
limit of a flat family of vector bundles, whose restriction to D is rigid.

Proof. Since h2(End(F )(−D)) = 0 as shown in the proof of lemma ??, by
the exact sequence (3) we obtain that the restriction map

γ: H1(S, End(F )) → H1(S, End(F |D) (4)

is surjective. The surjectivity of γ means that every local deformation of F |D
may be lifted to a local deformation of F. Thus, we obtain from lemma ??
that F is a flat limit of a flat family of vector bundles, whose restriction to
D is rigid.

3.1 Case 1: the rank does not divide the degree

Let F be a simple vector bundle on S whose rank r ≥ 2 does not divide the
degree. Write det(F ) · OS(h) = ar − x, with 0 < x < r. We construct the
local moduli space of F.

Take any fiber K of u. If F |K is not rigid, then by [?] Lemma 2, it is of
special type among deformations of bundles on P1; such types occurring in a
subset of codimension at least 3 inside a complete family. The following trick
we stole from [?] and it was the starting point of our paper. The surjectivity
of γ in (4) implies that the general member of this family in Proposition
?? has, as restriction to any fiber, a general deformation of F |K , i.e. the
only rigid vector bundle on P1 with degree ar − x, i.e. the bundle on P1

with splitting type (a, · · · , a, a− 1, · · · , a− 1) (with a− 1 appearing x times).
Therefore there exists a flat deformation of F whose general G element has
rigid restriction to all except finitely many fibers of u. This implies that G
is uniform in the sense of Ishimura with respect to the ruling u (see [?]).
Changing bases, H: = u∗(G⊗OS(−ah)) is a rank r− x vector bundle on P1

and u∗(H) is a rank r − x sub-bundle of G⊗OS(−ah) and

G⊗OS(−ah)

u ∗ (H)
⊗OS((a− 1)h) ' u∗(H)

for some rank x vector bundle M on P1. Thus we have an exact sequence

0 → u∗(H)⊗OS(ah) → G → u∗(M)⊗OS((a− 1)h) → 0. (5)
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The Chern classes of G are uniquely determined by the integers e, a, x, deg(H)
and deg(M). Conversely, the integers deg(M) and deg(H) are uniquely de-
termined by r, a, x and the Chern classes of G. We set the shorthands

M̄ : = u∗(M)⊗OS((a− 1)h),

H̄: = u∗(H)⊗OS(ah),

K: = OS(−2h− (e + 2)f).

By Serre duality

h2(S, Hom(M̄, H̄)) = h0(S, Hom(M̄, H̄ ⊗K)).

The restriction of Hom(M̄, H̄ ⊗K) to any fiber of u is a direct sum of line
bundles of degree at most −3. Thus

h2(S, Hom(M̄, H̄)) = 0.

By Riemann Roch, the integer h1(S, Hom(M̄, H̄)) depends only on the nu-
merical data e, r, x, a, deg(H), and deg(M) but not on the specific choice of
the vector bundles M and H. From the properties of the universal Ext func-
tor (see [?]) it follows that, corresponding to any family of vector bundles
{Mt}t∈T and {Ht}t∈T parametrized by an irreducible variety T, we obtain
a flat family V = {Gt}t∈T of middle terms of extensions (4) parametrized
by T with each Gt a rank r vector bundle on T. Since T is assumed to be
irreducible, V is irreducible.

We choose as the parameter space T the product of a versal deformation
space of M and a versal deformation space of H. Such spaces are irreducible,
smooth and of dimension respectively h1(P1, End(M)) and h1(P1, End(H)).
With this choice of T, for a general t ∈ T the vector bundles M and H are
rigid and the the general vector bundle Gt, of the family is an extension of
the form (4) with M and H rigid. The set of all such extensions is a vector
space, whose dimension depends only on the numerical data r, c1(G), and
c2(G). Combining with (4) we obtain that any simple rank r vector bundle
F with degree ar− x is the flat limit of a family of simple vector bundles Gt

arising from the family just described, that is, from an extension (4) with M
and H rigid.

We now extend the construction of the flat family to bundles on Ŝ. Let
D ' P1 be a fiber of u and J the ideal sheaf of D in V or Ŝ. Let D̂ = {D(n)}
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be the formal completion of D in Ŝ. Hence D(n) has Jn as ideal sheaf in Ŝ (or
in V ) and D(0) = D. We have J/J2 ' OD(t)⊗OD and Jn/Jn+1 ' Sn(J/J2)

for every n ≥ 1. Let A = {An} be a rank r vector bundle on Ŝ. For every
integer n ≥ 1 we have an exact sequence

0 → Jn/Jn+1 ⊗ A1 → An+1 → An → 0. (6)

Lemma 3.9 For every n ≥ 1 the restriction maps ρn:Pic(D(n)) → Pic(D)

and ρ:Pic(D̂) → Pic(D) are bijective.

Proof. Since h2(D, Jn/Jn+1) = 0 for every n ≥ 1, to obtain the surjectivity
of ρn it is sufficient to copy [?], part 2 of the proof of theorem 3.1 on page
179. The last assertion follows from the bijectivity of all maps ρn, just by
the definition of line bundle on a formal scheme.

The proof of Lemma ?? gives without any modification the analogous result
with S in place of D.

Lemma 3.10 For every n ≥ 1 the restriction maps ρn:Pic(S(n)) → Pic(S)

and ρ:Pic(Ŝ) → Pic(S) are bijective.

By Lemma ?? we can write OD(n)(a) (resp. O bD(a)) for the unique line bundle

on D(n) (resp. D̂) whose restriction to D has degree a. By Lemma ?? we
can write OS(n)(a, b) (resp. ObS(a, b)) for the unique (up to isomorphism) line

bundle on S(n) (resp. Ŝ whose restriction to S is isomorphic to OS(a, b).

Proposition 3.11 If the restriction of G1 to a fiber D has splitting type
(a, · · · , a, a− 1, · · · , a− 1), with a− 1 appearing x times, then

G| bD ' O bD(a)⊕(r−x) ⊕O bD(a− 1)⊕x.

Proof. Let J be the ideal sheaf of D in V (or Ŝ). We have J/J2 ' OD(t)⊕OD.
Since by our assumptions t > 0, then for every integer n ≥ 1 the sheaf of
OD−modules Jn/Jn+1 ' Sn(J/J2) is the direct sum of n+1 line bundles on
D with nonnegative degree. Set

An: = Hom(OD(n)(a)⊕(r−x) ⊕OD(n)(a− 1)⊕x, Gn).

Thus {An} is a rank r2 vector bundle on Ŝ and h1(D, A1) = 0. Fix an
integer n ≥ 1 and assume Gn ' OD(n)(a)⊕(r−x) ⊕OD(n)(a − 1)⊕x. Fix mn ∈
H0(D(n), An) with mn invertible. We have H1(D, Jn/Jn+1 ⊗ (a − 1)) = 0.
Thus by (5) we may lift mn to mn+1 ∈ H0(D(n+1), An+1) with mn+1|D(n) =
mn. By Nakayama’s lemma mn is invertible.

11



3.2 Case 2: the rank divides the degree

Fix integers r and a with r ≥ 2. Let F be a simple rank r vector bundle on
S such that det(F ) ·OS(h) = ar, i.e., such that the restriction of to any fiber
of u has degree d = ar. Since F is simple, by ?? we have that F is a flat limit
of a flat family of vector bundles on S. The general element of this family
is a vector bundle G whose restriction to a general fiber of u has splitting
type (a, · · · , a) (i.e. it is isomorphic to O

P
1(a)⊕r) but for which there are

finitely many (say z) fibers of u such that the restriction of G to each of
these z fibers has splitting type (a + 1, a, · · · , a, a − 1) (i.e. it is isomorphic
to O

P
1(a + 1)⊕O

P
1(a)⊕(r−2) ⊕O

P
1(a− 1). The z fibers of u arising in this

way are called the jumping fibers of G.

Theorem C Let z be number of jumping fibers of G. Set E = G(−ah) and
m: = deg(u∗E). Then

z = c2(E) = c2(G)− a(r − 1)c1(G) · h− ea2r(r − 1)/2

and
m = c1(u∗E) = −z + c1(G) · h + rae.

Proof. If E = G(−ah) then the restriction of E to a general fiber has splitting
type (0, · · · , 0) whereas the jumping fibers of E have type (1, 0, · · · , 0,−1).
It follows that for each point p ∈ C such that u−1(p) is a jumping fiber of
E the length l(R1u∗Ep(−1)) = 1. Hence each jumping fiber has multiplicity
one and z =

∑
p l(R1u∗Ep(−1)) = c2(E). By[?] Lemma 2.1 c2(E) = c2(G)−

a(r − 1)c1(G) · h− ea2r(r − 1)/2.
By Grothendieck–Riemann–Roch ch(u!E)td(TC) = u∗ (ch(E)td(TS)) , which

gives

c1(u∗E) = −z + u∗

(
(c1 − rah) · (h +

e + 2

2
f)

)
and it follows that m = c1(u∗E) = −z + c1(G) · h + rae.

Changing bases, the coherent sheaf H: = u∗(G ⊗ OS(−ah)) is a rank
r vector bundle on P1. The sheaf u∗(H) is a rank r subsheaf of G with
G/(u∗(H) ⊗ OS(ah)) supported at the jumping fibers of G. The integers
e, r, a and the Chern classes of G are uniquely determine the integers z and

12



deg(H). Conversely, the Chern classes of G are uniquely determined by the
integers e, r, a, deg(H) and z. G is a flat limit of a family {Gα} of simple vector
bundles with the same properties of splitting type with respect to the fibers
of u, but with the added condition that Hα = u∗(Gα(ah)) is rigid. Hence
for such Gα the vector bundle Hα is uniquely determined by the integers r
and deg(H). Only the position of the z points of Gα/u∗(Hα)(ah) and the
extension class of the sheaf Gα/u∗(Hα)(ah) by the sheaf u∗(Hα)(ah) depend
on α.

Proposition 3.12 Let {Gn} be a rank r vector bundle on Ŝ such that G1

is simple. Let D be a fiber of u such that G1|D has splitting type (a, · · · , a).
Then G| bD ' O bD(a)⊕r.

Proof. Twisting by the line bundle O bD(a) we reduce to the case a = 0. Let

J be the ideal sheaf of D in Ŝ. We have J/J2 ' OD(t) ⊕ OD and for every
integer n ≥ 1 the OD−sheaf Jn/Jn+1 ' Sn(J/J2) is the direct sum of n + 1
line bundles on D with nonnegative degree. Set

An: = Hom(OD(n)⊕r, Gn).

Thus {An} is a rank r2 vector bundle on Ŝ and A1 is trivial. Fix an integer
n ≥ 1 and assume Gn is trivial. Fix a trivialization of Gn, i.e. fix mn ∈
H0(D(n), An) with mn invertible. Then H1(D, Jn/Jn+1 ⊗ A1) = 0 and by
(5) we may lift mn to mn+1 ∈ H0(D(n + 1), An+1) with mn+1|D(n) = mn. By
Nakayama’s lemma mn is invertible.

Proof of Theorem A: For smoothness of the deformation space apply Lemma
?? and Remark ??. Properties (ι) and (ιι) follow from Propositions ?? and
??.

4 Bundles on a neighborhood of a surface

ruled over a curve of higher genus

We re-study the theory just done, now for the case in which the divisor S is
ruled over a smooth curve C of genus q > 0. S: = P(B) is the projectivization
of a rank two vector bundle B over C. Let u: S → C be the projection. Fix
a section, h, of S with minimal self-intersection and set e: = −h2. Denote
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by h the class of h. By a theorem of M. Nagata and C. Segre e ≥ −q and
every integer ≥ −q occurs for some rank two vector bundle B on C (see the
introduction of [?]). Pic(S) ' u∗(Pic(C)) ⊕ Z[h] and u∗(M) · h = deg(M)
and u∗(M) · u∗(H) = 0 for all M, H ∈ Pic(C). The ruling u induces an
isomorphism between h and C and we use this isomorphism to identify the
normal bundle of h in S with a line bundle N on C with deg(N) = −e. The
canonical line bundle of S is isomorphic to u∗(wC ⊗ N)(−2h). We assume
that S is contained in a smooth threefold W. We use the letter V to denote
either a small neighborhood of S in the smooth topology in W, or else the
germ of W around V. Let Ŝ be the formal completion of S in V and I be the
ideal sheaf of S in V or in Ŝ. Define A ∈ Pic(C) and t ∈ Z by the relation
I/I2 ' u∗(A)(th). We assume t > 0 and deg(A) > 2q− 2 + |e|. By Riemann
Roch, h0(C,A) > 0 and h0(C,A⊗N) > 0.

Definition 4.1 A good polarization of a ruled surface u: S → C is an ample
divisor R ∈ Pic(S) such that R · wS + R ·D < 0 for every fiber D of u.

Remark 4.2 Good polarizations exist and occur quite frequently. For in-
stance, choose any ample divisor H ∈ Pic(S). Then, for any fiber D of u
we have D · wS = −2, and H(tD) · wS + H(tD) · D < 0 for every integer
t >> 0. Furthermore H(tD) is ample for every t ≥ 0 because D is numerically
effective. Thus, for t >> 0 the line bundle H(tD) is a good polarization.

Our definition of good polarization is exactly the definition for which
Lemma ?? and Proposition ?? work for q > 0 and for any R–stable vector
bundle on S. In what follows we assume that R is a good polarization of S.

Lemma 4.3 Let E = {En} be a vector bundle on Ŝ such that E|S is R–stable
in the sense of Mumford and Takemoto. Then, h2(S(n), End(En)) = 0 for
all n ≥ 1.

Proof. First assume n = 1. Since E|S is R–stable and R · wS < 0, we have
h0(S, Hom(E|S, E|S ⊗ wS)) = 0. By Serre duality,

h0(S, Hom(E|S, E|S ⊗ wS)) = h2(S, End(E|S)),

concluding the case n = 1. Now assume n ≥ 2 and that the result is true
for the integer n− 1, i.e., assume h2(S(n− 1), End(En−1)) = 0. Define A by
I/I2 ' u∗(A)(th) as in the introduction of this section and set N : = I/I2.
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Since dim(S(n)) = 2 we have h3(S(n), A) = 0 for every coherent analytic
sheaf A on S(n). Using (2) for the integer n − 1 and the vector bundle
End(En) instead of En, together with the inductive assumption, we see that
h2(S(n), End(En)) = 0 if h2(S, End(E|S)⊗N⊗n) = 0. Since h0(C,A⊗n) > 0
and R is a good polarization, we have R · wS ⊗N⊗n < 0. By Serre duality,

h2(S, End(E|S)⊗N⊗n) = h0(S, Hom(E|S, E|S ⊗ wS ⊗ (N ∗)⊗n))

which vanishes, by the R–stability of E|S.

The proof of Lemma ?? works verbatim in this situation just assuming
that F is R–stable for some good polarization R on S. Lemmas ?? and ??
work verbatim. Therefore, we can write O bD(a)) for the unique line bundle

on D̂ whose restriction to D has degree a and we write ObSu∗(M)(th) for

the unique (up to isomorphism) line bundle on Ŝ whose restriction to S is
isomorphic to OSu∗(M)(th). We may now re-state 2.9 in the situation.

Proposition 4.4 Fix integers r, a and x with r ≥ 2 and 0 < x < r. Let
G = {Gn} be a vector bundle on Ŝ such that the restriction of G1 to a fiber
D of u has splitting type (a, · · · , a, a − 1, · · · , a − 1), with a − 1 appearing x
times. Then G| bD ' O bD(a)⊕(r−x) ⊕O bD(a− 1)⊕x.

Let F be an R–stable rank r vector bundle on S such that det(F )·OS(h) =
ar, that is, such that the restriction of to any fiber of u has degree ar. Then
?? and ?? hold with E|S R–stable in place of E|S simple, we obtain.

Proposition 4.5 Fix integers r, a with r ≥ a. Let {Gn} be a rank r vector

bundle on Ŝ such that G1 is R–stable. Let D be a fiber of u such that G1|D '
OD(a)⊕r. Then G| bD ' O bD(a)⊕r.

Proof of Theorem B: For smoothness of the deformation space apply Lemma
?? and Remark ??. Properties (ι) and (ιι) follow from Propositions ?? and
??.

References

[1] M. Artin Algebraization of formal moduli. I, Global Analysis (Papers in
Honor of K. Kodaira) Univ. Tokyo Press, Tokyo (1969) pp. 21–71.

15



[2] J. Brun and A. Hirshowitz, Droites de saut des fibrés stables de rang
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