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Instantons on R4

The statement of the conjecture comes from N. A. Nekrasov,
Seiberg-Witten prepotential from instanton counting, and predicts
a relation between SUSY N = 2 Yang–Mills instanton partition
functions and the Seiberg–Witten prepotential.

Field theory description: comes from comparison of the infrared
and ultraviolet limits of certain gauge theories. Nekrasov verifies
that the vaccum expectation values of their observables is not
sensitive to the energy scale.
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Nekrasov’s Conjecture – informally

1. In the ultraviolet the theory is weakly coupled and dominated
by instantons.

2. In the infrared there appears a relation to the prepotential of
the effective theory.

Comparing the results of 1 and 2 leads to a conjectural relation
between the instanton partition function and the Seiberg–Witten
prepotential.
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Proofs of the conjecture - R4 4d

The conjecture for instantons on R4 was proven (4d cases)

by Nekrasov and Okounkov in
Seiberg–Witten Theory and Random Partitions – 2003

by Nakajima–Yoshioka in
Instanton Counting on Blowup I. 4-Dimensional Pure Gauge
Theory – 2003

by Braverman–Etingof in
Instanton counting via affine Lie algebras II: from Whittaker
vectors to the Seiberg–Witten prepotential – 2004
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Proofs of the conjecture - R4 5d

Note that the papers above address only instantons on R4. Our
result is a proof of a generalised form of Nekrasov’s conjecture for
instantons on toric surfaces.

Göttsche–Nakajima–Yoshioka (5d theory compactified on a circle)
K-theoretic Donaldson invariants via instanton counting – 2006
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Main Theorem - informal version

Theorem (G., Chiu-Chu Melissa Liu)

Nekrasov’s conjecture is true for non-compact toric surfaces.

(We prove 8 instances of the conjecture, more later...)

I now explain the formal statement of the theorem for instantons
over the open, toric surface

Σo
k := Σk\`∞ = Tot

(
OP1(−k)

)

In this particular example we have the same moduli spaces as the
ones considered by Bruzzo – Poghossian – Tanzini in Instanton
counting on Hirzebruch surfaces– 2008
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remark

I Non-compact case: there is a family of theories parametrised
by the u-plane.

I Compact case: one integrates over the u-plane, so the
partition function depends on one less parameter.
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Nekrasov instanton partition function (pure gauge)

Z inst
X (ε1, ε2,~a; Λ) :=

∑
n≥0

Λ2rn

∫
M(X ,r ,n)

1

where M(X , r , n) is the moduli space of framed SU(r)-instantons
with charge n on surface X .

Here the εi are parameters of the small torus action on the surface,
and ~a is a vector on the Lie algebra of the big torus that acts on
framings.

The integral is taken by formally applying Atiyah–Bott localization
and taking the result as the definition.
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classical instantons versus SUSY ones

First I intent to compare existence results for classical instantons
versus supersymmetric instantons.

Lemma (G., Köppe, Majumdar)

SU(r)-instantons on Σo
k are in one-to-one correspondence with

rank-r holomorphic bundles on Σo
k with c1 = 0 together with a

framing at infinity.
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Gaps on instanton charges

Remark
If k = 1, then all holomorphic bundles on Σo

k with c1 = 0
correspond to instantons; otherwise there are strong restrictions on
the splitting type.

In particular, this implies gaps on the values of the topological
charge.

Theorem (G., Köppe, Majumdar)

If E is a nontrivial SU(2)-instanton on Σo
k , then its charge satisfies

χ(E ) ≥ k − 1.
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Local instanton charge

Definition
Let π : X̃ → X be a resolution of a singularity x ∈ X and E sheaf
on X̃ then the local charge of E is

χloc(E ) := l(R1π∗E ) + l

(
(π∗E )∨∨

π∗E

)
= hk(E ) + wk(E )
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Gaps on instanton charges

Theorem (Ballico, Köppe, G.)

Let E be an algebraic rank-2 vector bundle over Σ0
k with c1 = 0

and splitting type j > 0. Let n1 =
⌊ j−2

k

⌋
and n2 =

⌊ j
k

⌋
. Then the

following bounds are sharp:

j − 1 ≤ hk(E ) ≤ (j − 1)(n1 + 1)− k

(
n1

2

)

0 ≤ wk(E ) ≤ (j + 1)n2 − k

(
n2

2

)
and w1(E ) ≥ 1.

(????)
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Back to SUSY instantons

In greater generality, for framed, torsion-free sheaves of degree d
and c2 = n we have:

Lemma
M(Σk , r , d , n) is smooth of dimension 2nr + k(r − 1)d2.

Computation technique: We use the Atiyah–Bott Localisation
Theorem for the toric action on the moduli spaces to compute
Nekrasov’s partition function.
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Torus action on the moduli spaces

We have a torus T̃ = Tt × Te where:
the small torus Tt ' C∗ × C∗ acts on the surface X ,
the big torus Te is the maximal torus of GL(r) acting on frames.

I For (t1, t2) ∈ Tt we denote by F(t1,t2) the automorphism of X
given by F(t1,t2)(x) = (t1, t2) · x .

I For ~e = diag(e1, . . . , er ) ∈ Te we denote by G~e the
isomorphism of O⊕r

`∞ given by (s1, . . . , sr ) 7→ (e1s1, . . . , er sr ).
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Torus action on the moduli spaces - cont.

I The above actions induce an action of T̃ on the moduli space:
given (E ,Φ) ∈Mr ,d ,n(X , `∞) set

(t1, t2,~e) · (E ,Φ) =
(
(F−1

t1,t2
)∗E ,Φ′

)
,

where Φ′ is the composition of homomorphisms

(F−1
t1,t2

)∗E |`∞
(F−1

t1,t2
)∗Φ

−−−−−−→ (F−1
t1,t2

)∗O⊕r
`∞ −→ O

⊕r
`∞

Ge−−−→ O⊕r
`∞ .
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Fixed point set I

The set of fixed points Mr ,d ,n(X , `∞)
eT consist of(

E ,Φ
)
=
(
I1(D1),Φ1

)
⊕ · · · ⊕

(
I2(Dr ),Φr

)
such that

I Iα(Dα) = Iα ⊗OX (Dα)
I Dα is a Tt-invariant divisor in X0 = X \ `∞
I Iα are ideal sheaves of 0-dimensional subschemes Qα in X0.

I Iα is fixed by the action of Tt .

I Φα is an isomorphism from (Iα)`∞ to the αth factor of O⊕r
`∞ .

The support of Qα must be contained in the fixed point set in X .

Elizabeth Gasparim, Chiu-Chu Melissa Liu Nekrasov Conjecture for Toric Surfaces



Fixed point set II

Each Qα is a union of subschemes Qv
α supported at a fixed point

pv ∈ X0. If we take a coordinate system (x , y) around pv then the
ideal of Qv

α is generated by monomials x iy j , so Qv
α corresponds to

a Young diagram Y v
α .

Relation to the surface X 0: we write a graph Γ so that the fixed
point set gets described in terms of combinatorial data:

{
vertices of Γ

}
⇐⇒

{
Tt-fixed points in X 0

}{
edge of Γ

}
⇐⇒

{
Tt-invariant P1 in X 0

}
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Equivariant cohomology

Let ET → BT be the universal T -bundle. Then

BT = B(C∗)2+r ∼= (BC∗)2+r

where BC∗ = P∞. The T -equivariant cohomology of X is

H∗T (X ) = H∗(ET ×T X )

is the homotopy orbit space. In particular,

H∗T (pt) = H∗T (BT ) ∼= Q[ε1, ε2, a1, . . . , ar ].
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Atiyah–Bott Localization

Notation:

I MT = T -fixed points of M.

I N = normal bundle of MT .∫
M
α =

∫
MT

i∗α
eT (N)

,

where i : MT ↪→ M is the inclusion.

In particular, when MT consists of isolated points, then∫
M
α =

N∑
j=1

i∗α
eT (Tpj M)

.

Elizabeth Gasparim, Chiu-Chu Melissa Liu Nekrasov Conjecture for Toric Surfaces



Equivariant parameters

For i = 1, 2, let pi : BTt
∼= P∞ × P∞ be the projection to the i-th

factor, and let εi = (c1)Tt (p∗i O(1)). Then

H∗Tt
(pt; Q) = H∗(BTt ; Q) = Q[ε1, ε2].

Let ti = eεi = ch1(p∗i O(1)).
Similarly, for j = 1, . . . , r , let qj : BTe

∼= (P∞)r → P∞ be the
projection to the j-th factor, and let aj = (c1)Tt (q∗j O(1)). Then

H∗Te
(pt; Q) = H∗(BTe ; Q) = Q[a1, . . . , ar ].

Let ej = eaj = ch1(q∗j O(1)). We write ~a = (a1, . . . , ar ) and
~e = (e1, . . . , er ) = (ea1 , . . . , ear ).
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Example

Tt = C ∗ × C ∗ acting on P2 by

(t1, t2)[z0, z1, z2] = [z0, t1z1, t2z2]

here we have H∗Tt
(pt,Q) = Q[ε1, ε2] and∫

P2

1 =
1

ε1ε2
+

1

(−ε1)(−ε1 + ε2)
+

1

(−ε2)(ε1 − ε2)
= 0

∫
C2

1 =
1

ε1ε2
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Main Theorem - Pure Gauge Theory case (Definitions)

ε1, ε2 = weights of the small torus action

~a = vector in the Lie algebra of the big torus

Λ = formal variable

Definition

F inst
Σk ,d

(ε1, ε2,~a; Λ) := log Z inst
Σk ,d

(ε1, ε2,~a; Λ) .
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Main Theorem - Pure Gauge Theory

Theorem (G., Chiu-Chu Melissa Liu)

Statement for Σ0
k

I The function

ε2(kε1 + ε2) F inst
Σ0

k ,d
(ε1, ε2,~a; Λ)

is analytic in ε1, ε2 near ε1 = ε2 = 0.

I The limit at zero is

lim
ε1,ε2→0

ε2(kε1 + ε2) F inst
Σ0

k ,d
(ε1, ε2,~a; Λ) = kF inst

0 (~a; Λ) ,

where F inst
0 (~a; Λ) is the instanton part of the Seiberg–Witten

prepotential.
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Expression for Nekrasov’s partition function

Z inst
Σ0

k ,d
(ε1, ε2,~a; Λ) =

∑
{~d}=− d

r

Λkr(~d ,~d)∏
α,β lk,

~d
α,β(ε1, ε2,~a)

·

Z inst
C2 (ε1, ε2,~a + ε2

~d ; Λ) · Z inst
C2 (−ε1, kε1 + ε2,~a + (kε1 + ε2)~d ; Λ) ,

where we used expression of the partition function for C2

Z inst
C2 (ε1, ε2,~a; Λ) =

∑
~Y

Λ2r |~Y |∏r
α,β=1 n

~Y
α,β(ε1, ε2,~a)

, and. . .
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. . . and

lk,
~d

α,β(ε1, ε2,~a) =



dα−dβ−1∏
j=0

kj∏
i=0

(−iε1 − jε2 + aβ − aα) if dα > dβ,

dβ−dα∏
j=1

kj−1∏
i=1

(iε1 + jε2 + aβ − aα) if dα < dβ,

1 if dα = dβ,

n
~Y
α,β(t1, t2) =

∏
s∈Yα

(
−lYβ(s)ε1 + (aYα(s) + 1)ε2 + aβ − aα

)
·
∏

t∈Yβ

(
(lYα(t) + 1)ε1 − aYβ(t)ε2 + aβ − aα

)
.
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Susy
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The Seiberg–Witten Prepotential (Definition Part 1)

Seiberg–Witten curves are a family of hyperelliptic curves
parametrised by ~u = (u2, · · · , ur ):

C~u : Λr

(
w +

1

w

)
= P(z) = z r + u2z r−2 + u3z r−3 + · · ·+ ur ,

coming together with the double cover C~u → P1 given by the
projection (w , z) 7→ z .

The parameter space ~u ∈ Cr−1 is the so-called u-plane.
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The Seiberg–Witten Prepotential (Definition Part 2)

The hyperelliptic involution is given by ι(w) = 1/w .

Introducing y = Λr
(
w − 1

w

)
we have

y 2 = P(z)2 − 4Λ2r .

We choose a symplectic basis {Aα,Bα, α = 2, . . . , r} of H1(C~u; Z);
consequently

Aα · Aβ = 0 = Bα · Bβ
and

Aα · Bβ = δαβ .

Elizabeth Gasparim, Chiu-Chu Melissa Liu Nekrasov Conjecture for Toric Surfaces



Symplectic basis on C~uFind branched points z±α near zα (roots of P (z) = 0) (Λ small).
Choose cycles Aα, Bα (α = 2, . . . , r) as

z+
1 z−1 z−2 z+

2 z+
3 z−3

A1 A2 A3

B2

B3

Put

aα =
∫

Aα

dS, aD
β = 2π

√
−1
∫

Bβ

dS

Then

∃F0 : aD
β = −∂F0

∂aβ

26
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The Seiberg–Witten Prepotential (Definition Part 3)

The (multivalued meromorphic) Seiberg–Witten differential is
defined by

dS := − 1

2pi

dw

w
= − 1

2π

zP ′(z)dz√
P(z)2 − 4Λ2r

.

Elizabeth Gasparim, Chiu-Chu Melissa Liu Nekrasov Conjecture for Toric Surfaces



The Seiberg–Witten Prepotential (Definition Part 4)

Functions aα, a
D
β on the u-plane are defined by

aα :=

∫
Aα

dS , aD
β := 2π

√
−1

∫
Bβ

dS

for α = 1, . . . , r and β = 2, . . . , r .
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The Seiberg–Witten Prepotential (Finally!)

The Seiberg–Witten prepotential is a locally defined function
F0(~a; Λ) on the ~u-plane satisfying:

aD
α = −∂F0

∂aα
.
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Periods

It then follows that

ταβ = − 1

2π
√
−1

∂2F0

∂aα∂aβ

is the period matrix of C~u.

(Defined in Electric-magnetic duality, monopole condensation, and
confinement in N = 2 Supersymetric Yang Mills theory.)
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Corollaries, Rank-1 Case

The instanton partition functions in 4D, 5D and 6D correspond to
the generating series of the holomorphic Euler characteristic χ0,
the Hirzebruch genus χy , and elliptic genus χ of M(Σk , 1, d , n),
respectively.

The 4D case: Holomorphic Euler Characteristic: χ(OM)

ZC2(t1, t2; Q) =
∑
Y

Q |Y |∏
s∈Y

(
1− t

l(s)
1 t

−1−a(s)
2

)(
1− t

−1−l(s)
1 t

a(s)
2

)
ZΣk ,d(t1, t2; Q) = ZC2(t1, t2; Q) ZC2(t−1

1 , tk
1 t2; Q) .
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The 5D case: Hirzebruch χy-genus

ZC2(t1, t2; Q, y) =
∑
Y

Q |Y |
∏

s∈Y 1

(
1− yt

l(s)
1 t

−1−a(s)
2

)(
1− yt

−1−l(s)
1 t

a(s)
2

)
(

1− t
l(s)
1 t

−1−a(s)
2

)(
1− t

−1−l(s)
1 t

a(s)
2

)

ZΣk ,d(t1, t2; Q, y) = ZC2(t1, t2; Q, y) ZC2(t−1
1 , tk

1 t2; Q, y) .
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The 6D case: Elliptic genus

ZC2(t1, t2; Q, y , p) =
∑
Y

(y−1Q)|Y |
∏
n≥1∏

s∈Y

(
1− ypn−1t

l(s)
1 t

−1−a(s)
2

)(
1− y−1pnt

−l(s)
1 t

1+a(s)
2

)
(

1− pn−1t
l(s)
1 t

−1−a(s)
2

)(
1− pnt

−l(s)
1 t

1+a(s)
2

) ·

∏
s∈Y

(
1− ypn−1t

−1−l(s)
1 t

a(s)
2

)(
1− y−1pnt

1+l(s)
1 t

−a(s)
2

)
(

1− pn−1t
−1−l(s)
1 t

a(s)
2

)(
1− pnt

1+l(s)
1 t

−a(s)
2

)
and

ZΣk ,d(t1, t2; Q, y , p) = ZC2(t1, t2; Q, y , p) ZC2(t−1
1 , tk

1 t2; Q, y , p) .
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General form of the partition function

Given two multiplicative classes A,B we define

Z inst
X0,A,B,d(ε1, ε2,~a; Λ) := Λ(1−r)d ·d ∑

n≥0

Λ2rn

∫
Mr,d,n(X ,`∞)

At̃(TM)Bt̃(V )

where TM = tangent bundle and V = natural bundle on M

obtained from the universal sheaf E → X ×M. Let pi be the
projections to the two factors.

The natural bundle over Mr ,d ,n(X , `∞) is

V := (R1p2)∗(E ⊗ p∗1(OX (−`∞))).
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Main Theorem - Prototype statement

Theorem
Nekrasov conjecture for toric surfaces

(a) F ···X0,A,B,d
(ε1, ε2,~a,m; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.

(b) lim
ε1,ε2→0

F ···X0,A,B,d(ε1, ε2,~a; Λ) = kF ···0 (~a,Λ), where F ···0 (~a,Λ) is

the · · ·part of the Seiberg-Witten prepotential of matter case
A,B,m, and k = `∞ · `∞ > 0 is the self intersection number
of `∞.

The 8 cases we prove are:
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Instanton part

With the ··· replaced by inst

1. 4d pure gauge theory: A = B = 1, m = ∅.
2. 4d gauge theory with Nf fundamental matter hypermultiplets:

A = 1, B = eTm(V ⊗M), m = (m1, . . . ,mNf
), where

M is the fundamental representation of U(Nf )
Tm is the maximal torus of U(Nf )

3. 4d gauge theory with one adjoint matter hypermultiplet:
A = emTM, B = 1, m = m.

4. 5d gauge theory compactified on a circle: A = Âβ(TM) is the

Âβ genus of the tangent bundle (the usual Â genus being the
case β = 1), B = 1, m = ∅ but F depends on the additional
parameter β.
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Perturbative part

With the ··· replaced by pert, we derive 4 more cases of the
conjecture, with same restrictions as in the first part:

1. 4d pure gauge theory.

2. 4d gauge theory with Nf fundamental matter hypermultiplets.

3. 4d gauge theory with one adjoint matter hypermultiplet.

4. 5d gauge theory compactified on a circle or circumference β.
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Obrigada pela atenção!
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