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Abstract

In this thesis we study the moduli of holomorphic vector bundles over a non-compact com-
plex space X , which will mainly be of dimension 2 or 3 and which contains a distinguished
line ` ⊂ X . We will consider the situation in which X is the total space of a holomorphic
vector bundle on CP1 and ` is the zero section.

While the treatment of the problem in this full generality requires the study of complex
analytic spaces, it soon turns out that a large part of it reduces to algebraic geometry. In
particular, we prove that in certain cases holomorphic vector bundles on X are algebraic.

A key ingredient in the description of the moduli are numerical invariants that we asso-
ciate to each holomorphic vector bundle. Moreover, these invariants provide a local version
of the second Chern class. We obtain sharp bounds and existence results for these numbers.
Furthermore, we find a new stability condition which is expressed in terms of these numbers
and show that the space of stable bundles forms a smooth, quasi-projective variety.
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Chapter 1

Preliminaries

1.1 Introduction

The aim of this thesis is to add to the understanding of the moduli of holomorphic vector
bundles on non-compact complex spaces. The cases we consider are complex surfaces and
threefolds which are the total spaces of bundles over CP1. Both these cases are not only
interesting in geometry, but also in mathematical physics. Indeed, there is an extensive
theory relating holomorphic vector bundles on smooth complex surfaces to instantons on
the underlying real manifold, provided by Kobayashi-Hitchin correspondence. The three-
dimensional case, on the other hand, is interesting in string theory, in which holomorphic
bundles, or more generally coherent sheaves, describe string boundary conditions (so-called
D-branes). A description of the moduli of such bundles is therefore important for any type of
problem that requires integration over “all branes”, which is a staple of mathematical physics.

Several results of this thesis have been published in joint work with my supervisor E.
Gasparim and with physicist P. Majumdar and E. Ballico. Some results will only be cited,
while the proofs of others are repeated here. By and large, lots of the results on complex
surfaces (Chapter 2) have been published, while the material in Chapter 3 on threefolds is
new.

The Kobayashi-Hitchin correspondence between irreducible SU (2)-instantons and stable
holomorphic vector bundles of rank 2 was proved for compact Kähler surfaces by Uhlenbeck
and Yau, for C2 by Donaldson and for C̃2, the blow-up of the plane in the origin, by King.
The result was extended to the non-compact spaces Zk described below in [GKM08], where
Z1 = C̃2.

When passing from complex projective geometry to non-compact spaces, one imme-
diately faces the complication that there exist holomorphic objects that are not algebraic.
We will briefly review the basic definitions of the categories of complex schemes and ana-
lytic spaces, before demonstrating that the class of non-compact spaces of the form Zk :=
Tot

(
OP1 (−k)

)
for k > 0 satisfies GAGA-type properties, as does the space W1 := Tot

(
OP1 (−1)⊕

OP1 (−1)
)
. Armed with this knowledge, we are able to present an explicit description of holo-

morphic vector bundles on Zk and W1 and to attempt a first guess at how to parametrise
their moduli.

The main part of this thesis consists of the construction of several holomorphic numerical
invariants of vector bundles. These techniques are applicable both in the case of surfaces
and of threefolds, and indeed they generalise to spaces of higher dimensions and bundles
of higher rank. The crucial condition on the base space is that it contains a contractible
line `∼=P1. If Z denotes any such space in question, we write π : Z → X for the contraction
of ` (so for example we have π : Z1 = C̃2 → C2). If E denotes a holomorphic vector bundle

1



Moduli of bundles on local surfaces and threefolds 2

on Z , then two of the numerical invariants of E are obtained from the cohomology of the
direct image Rπ∗E . We construct further invariants (which do not necessarily require the
space to contain a contractible line, merely a compact 1-cycle) from the cohomology of the
endomorphism sheaf End E .

The computation of these numbers proceeds by iteration over infinitesimal neighbour-
hoods. We will discuss the distinction between the algebraic and the analytic category and
conclude that we obtain the same results by performing the computations in either category.
Finally, I developed a set of computer algorithms for the computation of the invariants, using
the great open-source computer algebra system Macaulay 2 by Grayson and Stillman. While
a detailed description of the implementation is left to a separate publication, the results of
these automated computations have been used in several results.

Acknowledgements. I am greatly indebted to Elizabeth Gasparim for confronting me with
fascinating and challenging questions and for guidance in matters mathematical and meta-
mathematical. I am also most grateful to my collaborators Pushan Majumdar and Edoardo
Ballico for an exciting entry into mathematical research, to Mike Stillman and Dan Grayson
for creating and maintaining an active community around Macaulay 2, and to Irena Swanson
for interesting discussion, inspiration with the computer algorithms and editorial work.
Fruitful discussions were also had with Alexey Bondal, Alistair Craw, Gavin Brown, Tom
Bridgeland, Jean-Paul Brasselet, Sheldon Katz, Jonathan Block, Patrick Clarke and Tony
Pantev, and with Shiying Dong and Artan Sheshami, while Toby Bailey provided vital coffee
and Andrew Ranicki vital IT resources.

I should also like to thank the Engineering and Physical Sciences Research Council
and the London Mathematical Society for their support and the Centre International de
Rencontres Mathématiques, the University of Pennsylvania and the Indian Association for
the Cultivation of Science for their hospitality, all of which contributed significantly to this
work.

1.2 Analytic and algebraic geometry

The objects of our study lie at the confluence of different fields of mathematics, namely
topology, differential geometry, analysis and algebra. To study the geometry of a space X , we
will need to know its topology and its differential structure, so the notion of smooth manifolds
and vector bundles enters, but this is not quite enough. To fully express the subtleties that
arise, we need the notion of coherent sheaves over schemes and analytic spaces, or even over
formal schemes, formal spaces and stacks.

To begin, we will introduce two related notions of analytic spaces and schemes. To this
end, we first define several basic algebraic notions.

1.2.1 Basic definitions

We assume familiarity with basic notions of group and ring theory. In particular, every Abelian
group is a Z-module and every ring with unit is a Z-algebra, so it suffices to study modules
and algebras.

Algebra. We will write C{x1, . . . , xn} for the C-algebra of power series in n variables that
converge on a neighbourhood of 0 ∈ C. If k is any field (or indeed commutative ring with
unit), we will write k[x1, . . . , xn] for the k-algebra of polynomials in n variables. Clearly
C[x1, . . . , xn] (C{x1, . . . , xn}.

2



Moduli of bundles on local surfaces and threefolds 3

We will also reserve the notation R, S, . . . for commutative rings with unit. We denote
by ModR the (Abelian) category of R-modules and by modR the full subcategory of finitely
generated R-modules. If A is an Abelian category, we write C (A ) for the (Abelian) category
of cochain complexes, K (A ) for the (Abelian) category of cochain complexes up to cochain
homotopy, and D(A ) for the derived category of A . We also write K +(A ), K −(A ) and K b(A )
for the full subcategories of bounded (respectively above, below and both) complexes, and
for C (A ) and D(A ) similarly. Note that K (A ) and D(A ) are naturally triangulated. We write
CmodR(ModR ) for the category of cochain complexes in ModR whose cohomologies lie in
modR , and similarly for K and D .

Sheaves. If X is any topological space, there is a category OpenX whose objects are the open
sets of X and whose morphisms are the inclusions. A (set-valued) presheaf on X is a functor
F ∈ [

Open
op
X ,Set

]
, where Set is the category of sets, C op denotes the opposite category of a

category C and [C ,D] denotes the category of functors from a category C to a category D,
whose morphisms are natural transformations. A presheaf of Abelian groups takes values in
the concrete category of Abelian groups, and a presheaf of rings, modules, algebras etc. takes
values in the respective concrete subcategories. A presheaf is a sheaf if the gluing axiom
holds: For any two open subsets U ,V ⊆ X , if there exist s1 ∈F (U ) and s2 ∈F (V ) such that
s|U∩V = t |V ∩U , then there exists t ∈F (U ∪V ) such that t |U = s1 and t |V = s2. For every point
x ∈ X , the stalk at x of a presheaf F is

Fx := lim−−→
U3x

F (U ) ,

i.e. elements of Fx are represented by pairs (V , sV ) where V is open and contains x, sV ∈F (V ),
and (V ′, sV ′) is equivalent to (V , sV ) if and only if x ∈V ∩V ′ and sV |V ∩V ′ = sV ′ |V ′∩V .

1.2.2 Geometric spaces

Definition 1.1. A ringed space is a pair
(
X ,A

)
, where X topological space and A is a sheaf

of commutative rings with unit on X . A locally ringed space is a ringed space
(
X ,A

)
where

each stalk Ax is a local ring, i.e. a ring with a unique maximal ideal, which we denote by mx .
We will also write A =: OX and call OX the structure sheaf of X .

Definition 1.2. If
(
X ,A

)
is a ringed space, we say that a sheaf F on X is an A -module if each

F (U ) is an A (U )-module and the induced maps are module homomorphisms. We call an
A -module F locally free if F (U ) is a free A (U )-module for all open sets U ⊆ X ; equivalently
if all stalks Fx are free Ax -modules.

Analytic spaces. Note that the algebra C{x1, . . . , xn} is a local algebra, i.e. it has a maximal
ideal (namely the ideal of power series without constant term). We call an algebra A a C-
analytic algebra if it is isomorphic to the quotient of C{x1, . . . , xn} by some finitely generated
ideal for some n. (A similar notion exists for real-analytic algebras.)

Definition 1.3. A C-analytic space is a locally ringed space
(
X ,OX

)
where each stalk OX ,x is a

C-analytic algebra. The structure sheaf OX is the sheaf of germs of holomorphic functions,
whose stalks consist of power series that converge on some neighbourhood.

Remark 1.4. Every analytic space looks locally like
{

f1 = ·· · = fr = 0
}⊂Cn , where the fi are

holomorphic functions onCn , and the corresponding analytic algebra is justC{x1, . . . , xn}
/

( f1, . . . , fr ).
In fact, the anti-equivalence principle says precisely that germs of analytic spaces correspond
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precisely to analytic algebras. We call the induced topology on X the Euclidean or analytic
topology.

Schemes. (See standard textbooks like [Har77].) To every commutative ring with unit R we
can associate a locally ringed space

(
Spec(R) = X ,A

)
such that A (X ) = R ; this space Spec(R)

is called an affine scheme. Its points are the prime ideals of R, and its closed points are the
maximal ideals. The topology coming from the Spec-construction is the Zariski topology, in
which closed sets are precisely the zero locus of polynomials.

A general scheme can be covered by open sets that are affine schemes. If R is the quotient
of C[x1, . . . , xn] by a finitely generated ideal, we say that Spec(R) is an affine scheme over C
(and similarly for general schemes). Note that such a scheme over C is a locally ringed space
whose structure sheaf is the sheaf of regular functions, whose stalks are germs of polynomial
functions. Equivalently, such a scheme is locally the zero locus

{
f1 = ·· · = fr = 0

} ⊂ Cn of
polynomials.

Analytification. Since a polynomial ring over R or C is contained in the ring of convergent
power series and the latter is a module over the former, every real or complex scheme defines
uniquely a real- or complex-analytic space, which we may call the analytification of the
scheme.

Formal spaces and schemes. If
(
X ,OX

)
is a complex space or scheme and I ⊂OX a sheaf

of ideals defining a subspace A ⊆ X , then the locally ringed space

A(m) := (
A,OX

/
I m+1|A

)
is called the mth infinitesimal neighbourhood of A in X ; it is itself respectively a complex
space or scheme. Moreover, for varying m these neighbourhoods form an inverse system
· · · → A(m) → A(m−1) → ··· → A(0) = A. We call the inverse limit of this system the formal
completion of X along A, written Â. Note that when I = 0, then A = X and X̂ = X . We will
colloquially call Â the formal neighbourhood of A.

For example, the formal completion of the origin in affine n-space is given by the limit

lim←−−
m
C[x1, . . . , xn]

/
(x1, . . . , xn)m+1 =C[[x1, . . . , xn]] ,

given by the ring of formal power series in the n variables. In analogy with the Spec-
construction Cn = SpecC[x1, . . . , xn], we also speak of a formal spectrum and write 0̂ =
SpfC[[x1, . . . , xn]]. Finally, a formal complex space or a formal scheme is a space that is covered
by open sets that are formal spectra. In other words, formal spaces or schemes look locally
like the formal completion of a space along a subspace. By virtue of our earlier remark, every
complex space is also a formal complex space, and likewise for schemes.

Note as an aside that the notion of formal completion is always available in Algebraic
Geometry, over any ground field, while the notion of analyticity and convergence exist mainly
over R or C.

1.3 Moduli and deformation theory

1.3.1 Informal introduction

The moduli problem is, in a very general sense, the question whether there exists an object M,
the moduli, that parametrises all objects of a certain type – for example, all vector bundles
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over a scheme. In that case, each point of M is one such object. This situation is particularly
interesting if M itself has geometric structure: In good cases, when parametrising algebraic
objects over a scheme, M might be a scheme itself, or a more general object like an algebraic
space or a stack, the notions of which were invented precisely to describe the solutions of
moduli problems.

Suppose now that M parametrises vector bundles over a fixed base space X up to isomor-
phisms, so that we may write [E ] ∈M for the point that parametrises all bundles isomorphic
to E → X . If M is smooth at [E ], the tangent space T[E ]M measures infinitesimal first-order
deformations of E . Intersection theory tells us what T[E ]M is (if M has a perfect obstruction
theory), and in the case of vector bundles over a projective scheme X it will be H 1(X ; End E ).
The upshot is that the dimension of this cohomology group is the dimension of the compo-
nent of the moduli containing [E ].

Let us be more specific. By a deformation of some object Y we mean another, larger object
Y along with a morphism π : Y → S to some parametrising pointed object (S,0 ∈ S), such
that Y0 := π−1(0) ∼= Y . We call Y0 the central fibre of the family π. When S = SpecC[x]

/
(x2)

is the double point, we call π a first-order deformation. Similarly, we have higher-order
deformations over SpecC[x]

/
(xn) and formal deformations over SpecC[[x]] – but note that a

formal deformation does not imply that an actual deformation exists, which is essentially
asking for a formal power series to converge.

For example, in the category of schemes or of analytic spaces, a very popular deformation
is a flat smoothing, which means that π is a flat morphism (which is a homological condition)
and that the non-central fibres Xs , s 6= 0 are smooth. If X is not smooth and a flat smoothing
exists, then one can replace the study of the complicated object X0 by that of a smooth object
Xs , as long as one is concerned with properties that are invariant under flat deformations
(like the Hilbert polynomial).

1.4 Some results from deformation theory

Remark 1.5. If X ⊂W is a subspace such that the conormal sheaf N∗
X ,W is ample, the defor-

mation space of a bundle on X̂ is finite-dimensional:
Fix an integer m ≥ 0, a vector bundle Em on X (m) and set E0 := Em |X . If

h2(X ;End E0 ⊗Sm(N∗
X ,W )

)= 0 ,

then there exists a vector bundle Em+1 on X (m+1) such that Em+1|X (m)
∼= Em ([Pet81, Satz 1]).

Now let F be a vector bundle over X such that h2
(
X ;End F ⊗S t (N∗

X ,W )
)= 0 for all t > 0. If

N∗
X ,W is ample, then h1

(
X ;End F ⊗S t (N∗

X ,W )
)= 0 for t À 0, and hence

γ= ∑
t≥0

γt =
∑
t≥0

h1(X ;End F ⊗S t (N∗
X ,W )

)<+∞ . (1.1)

Then there exists a vector bundle G on X̂ such that G|X ∼= F , and for a fixed such G the
deformation space of G is isomorphic toCγ ([Pet82, Satz 2], and first Bemerkung at p. 115, and
see also [dJP00, Theorem 10.3.16]). There is a vector bundle A on an analytic neighbourhood
U of X in W such that A|X̂ =G , and hence A|X ∼= F ([Pet82, Satz 3]).
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Chapter 2

Surfaces

2.1 Introduction

In this chapter we focus on complex surfaces that contain an embedded line with negative
self-intersection number. We have in mind the situation where the line ` ∼= P1 inside the
surface Z has the conormal sheaf N ∗

`/Z
∼=OP1 (−k). Since we are only interested in the local

model, we will in fact assume that our space is the total space of a line bundle over P1 and
define the spaces Zk := Tot

(
OP1 (−k)

)
.

2.2 Digression: Application to mathematical physics

This section illustrates an application of our study of moduli to mathematical physics and
the theory of instantons, but it is not necessary for the remainder of this thesis.

The complex dimension 2 is special in the sense that a complex 2-manifold is also a real
4-manifold, and the geometry of real 4-manifolds is famously very special. In the present
case, we employ the Kobayashi-Hitchin correspondence for a compact Kähler manifold X
of complex dimension 2. A unitary, anti-self-dual connection ∇ on a smooth SU (2)-bundle
E → X (i.e. an instanton) decomposes as ∇= ∂+∂with respect to the complex structure on X ,
such that ∂ induces a holomorphic structure on E . The Kobayashi-Hitchin correspondence
states that the map ∇→ ∂ is invertible and provides a one-to-one correspondence between
SU (2)-instantons and holomorphic bundles with vanishing first Chern class on X , and the
instanton charge corresponds to c2(E). The correspondence has been proved in the cases
when X is a projective surface by Donaldson and when X is compact Kähler by Uhlenbeck
and Yau. In the non-compact case Donaldson proved the correspondence for X =C2 = Z0

and King for the case where X is the blow-up of C2 at the origin, which we denote by Z1.
In the non-compact cases, an instanton on X has to be understood as an instanton on
the projective closure of X , which is CP 2 in the case of X = C2 and the first Hirzebruch
surface Σ1 :=P(

OP1 (−1)⊕OP1

)
, with the additional condition that the bundle be trivial on a

neighbourhood of the line at infinity. Of course in the non-compact case the second Chern
class and the instanton charge vanish.

With this in mind it turns out that a holomorphic rank-2 bundle E on Zk corresponds
to an instanton if it extends to a bundle on the Hirzebruch surface Σk := P(

OP1 (−k)⊕OP1

)
such that the extension is trivial on the complement of `, and we call E a framed instanton
if a trivialisation of E on Zk \` has been fixed. We will find certain numerical invariants
for the description of the local moduli of bundles on Zk , from which we can build a local
holomorphic Euler characteristic, and we have proved that a version of the Kobayashi-Hitchin
correspondence extends to the spaces Zk and relates SU (2)-instantons with local charge n
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on Zk to holomorphic rank-2 bundles with vanishing first Chern class and local holomorphic
Euler characteristic n ([GKM08, Prop]). Here the local charge of an instanton E is thought
of as the second Chern class of the trivial extension of E to Σk . It is “local” because the only
contribution to this Chern class comes from a neighbourhood of `, thanks to the following
observation.

Under certain conditions that we make precise below, bundles on our model spaces Zk

can be “glued into” instantons on a larger (compact) surface X containing a line Y ⊂ X such
that N ∗

Y /X
∼=OP1 (−k) by a process that was called “holomorphic surgery” in [GKM08]. This

process works as follows. If E is a given instanton on X and we replace E by another bundle
E ′ with c1(E ′) = 0 such that E |X \Y

∼= E ′|X \Y , we have performed “holomorphic surgery”. If in
addition c2(E ′) < c2(E), we say that E has decayed to E ′. The charge difference c2(E)− c2(E ′)
should be visible entirely locally near Y , and indeed it is.

If we write N (Y ) for a small, analytic neighbourhood of Y , then rank-2 bundles on N (Y )
can be identified with rank-2 bundles on Zk (see Remark 2.3, it is not true that any tubular
neighbourhood of Y is biholomorphic to Zk ), and on Zk an instanton can indeed decay to
the trivial bundle. Plugging this back into X , we say that E should be allowed to decay locally.
If E ′ denotes the outcome of total local decay near Y , then c2(E )− c2(E ′) is precisely the local
charge of E near Y . It is the physical assumption that an instanton should locally be able to
decay entirely that leads us to assume that E is trivial on N (Y ) \ Y . In this case, holomorphic
surgery works simply by fixing a framing of E on N (Y ) \ Y and identifying it with a framing
on N (`) \` of the desired local instanton on Zk .

To summarise, the study of the local situation on Zk allows us to describe instanton decay
on any compact surface that contains negative lines via the contribution of local instanton
charges near those lines, which we model with the spaces Zk .

2.3 Vector bundles on Zk

The physics of the previous section is a In order to justify several of the constructions from
the previous section, we must understand what holomorphic vector bundles on Zk look like.
Suppose then that E → Zk is a holomorphic bundle. By the Grothendieck splitting principle,
E |` ∼=

⊕
i OP1 (ai ), and c1(E) =∑

i ai . It turns out that in fact E is algebraically filtered, that is,
made up from iterated algebraic extensions of bundles.

Theorem 2.1 ([Gas97]). A holomorphic vector bundle E → Zk of rank r is algebraically filtered,
i.e. there exists an increasing filtration E1 ⊂ ·· · ⊂ Er = E such that E1 is a line bundle and
Ei

/
Ei−1 is a line bundle for 2 ≤ i ≤ r , and moreover all bundles Ei are algebraic.

The spaces Zk are special model spaces, and in fact this result works in much greater
generality.

Theorem 2.2 (Ballico, Gasparim, Köppe). Let W be a connected, complex manifold and `⊂W
a reduced, connected curve that is locally a complete intersection. If the conormal bundle
N∗
`,W is ample, then every vector bundle on ̂̀ is filtrable. If in addition ` is smooth, then every

holomorphic bundle on ̂̀ is algebraic.

Remark 2.3. In fact, every vector bundle on ̂̀ is determined already on a finite infinitesimal
neighbourhood `(m). This is the reason that for the purpose of instanton decay we were
allowed to identify bundles on N (Y ) and Zk earlier.

Now we specialise to the case of rank-2 bundles. First note that Pic Zk
∼= H 2(Zk ; Z) ∼=Z

and thus line bundles on Zk are uniquely determined by their first Chern class, and they are

7
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simply the pull-back of OP1 (r ) from P1. Now if E → Zk is a bundle of rank 2 with c1(E) = 0,
then by Grothendieck’s splitting principle again, E |` ∼= OP1 (− j )⊕OP1 ( j ), and we call the
integer j the splitting type of E . Now by Theorem 2.1, E fits into a short exact sequence

0 −→O (− j ) −→ E −→O ( j ) −→ 0 . (2.1)

We will also fix once and for all local coordinate charts on Zk . Since Zk is the total space of a
vector bundle over the Riemann sphere P1, we only need two charts: Let U ∼=C2 = {z,u} and
V ∼=C2 = {z−1, zk u}. The bundle E is thus uniquely determined by one transition function on
the overlap U ∩V , which can be expressed in the form

T =
(

z j p(z,u)
0 z− j

)
, (2.2)

where p is a polynomial in z, z−1 and u.

2.4 Numerical invariants

The study of bundles on Zk becomes more interesting when one considers the contraction
π : Zk → Xk of the zero section `. To motivate this, let us return for a moment to the case
of instantons on Z1 and Σ1. Here the contraction maps Z1 to C2, and Σ1 to P2. Since the
target is smooth, the direct image sheaf π∗E of an instanton E is a sum of a locally free sheaf
and torsion, so its double dual (π∗E)∨∨ is locally free. On the compact spaces we can thus
consider the difference c2

(
E

)−c2
(
(π∗E)∨∨

)
, which is nothing but the local charge of E that

we met earlier. We compute this quantity directly by an application of Riemann-Roch and
find

c2
(
E

)− c2
(
(π∗E)∨∨

)= h0(X ; (π∗E)∨∨
/
π∗E

)+h0(X ;R1π∗E
)

. (2.3)

The notion of a Chern class of a holomorphic bundle is well-defined on smooth manifolds,
but on singular spaces there exist several inequivalent notions of Chern classes. However,
the right-hand side of Equation 2.3 is independent of any notion of Chern class. In fact, it
is a special case of what Blache [Bla96] defines as the local holomorphic Euler characteristic
χloc of a reflexive sheaf near an isolated quotient singularity: Let σ : (X , A) → (X ′, x) be a
resolution of an isolated quotient singularity and F a reflexive sheaf on X . Then

χloc(F , A,σ
)

:= h0(X ′; (σ∗F )∨∨
/
σ∗F

)+n−1∑
i=1

(−1)i−1h0(X ′; R iσ∗F
)

. (2.4)

For the case when X ′ is an orbifold, Blache [Bla96] shows that,

χ
(
X ,F

)=χ(
X ′, (σ∗F )∨∨

)+ ∑
x∈Sing X ′

χloc(F ,σ−1(x),σ
)

,

so the local holomorphic Euler characteristic measures precisely the amount of total Eu-
ler characteristic that is lost by contracting the orbifold resolution, or in other words the
contribution from a neighbourhood of the exceptional set A.

Our spaces Zk have cohomological dimension 1, so all higher derived images R iπ∗E vanish
for i > 1. For the smooth case Z1 we have thus

c loc
2

(
`,E

)=χ(
`,E

)
,

and from here we define the local charge of E near ` to be χ
(
`,E

)
. We name the two con-

8
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stituent summands the width wk (E) and the height hk (E) of the bundle E ,

Definition 2.4.

χloc(`,E ,π
)= h0(Xk ; (π∗E)∨∨

/
π∗E

)+h0(Xk ; R1π∗E
)= wk (E)+hk (E) ,

i.e.

wk (E) := h0(Xk ; (π∗E)∨∨
/
π∗E

)
and (2.5)

hk (E) := h0(Xk ; R1π∗E
)

. (2.6)

Remark 2.5. The width wk (E) measures how far the direct image sheaf π∗E is from being a
split extension; the height hk (E) measures how close E is to being the split bundle (which is
the unique bundle with maximal wk (E)+hk (E) for a fixed j ).

2.5 Bounds on the numerical invariants

The following results were proved in [BGK].

Theorem 2.6. Let E be a rank-2 bundle over Zk of splitting type j . Then the following bounds
are sharp: For j > 0 and with n2 = b j

k c,

0 ≤ wk (E) ≤ ( j +1)n2 −kn2(n2 +1)/2 , and w1(E) ≥ 1 .

Furthermore, for all 0 < j < k, wk (E) = 0 for all bundles E (and necessarily k > 1).

Proposition 2.7. Let E( j , p) be the bundle of splitting type j whose extension class is given by
p, and let Ē( j ) :=O (− j )⊕O ( j ) denote the split bundle. If u|p(z,u) and p 6≡ 0, then

hk
(
Ē( j )

)≥ hk
(
E( j , p)

)
.

Corollary 2.8. Let E be a rank-2 bundle over Zk of splitting type j with j > 0 and let j = nk+b
as above. The following are sharp bounds for the local holomorphic Euler characteristic of E:

j −1 ≤χ(`,E) ≤
{

n2k +2nb +b −1 if k ≥ 2 and 1 ≤ b < k ,

n2k if k ≥ 2 and b = 0 ,

and
j ≤χ(`,E) ≤ j 2 for k = 1 .

2.6 Moduli

We would like to know the structure on the space of rank-2 bundles on Zk . We already know
from Theorem 2.1 that all such bundles are extensions of the form (2.1). For each fixed
splitting type j , the space of such extensions is1 Ext1

Zk

(
O ( j ),O (− j )

)∼= H 1
(
Zk ; O (−2 j )

)
.

Remark 2.9. Note that the space Ext1
Zk

(
O ( j ),O (− j )

)
is finite-dimensional for every j . Hence

holomorphic bundles on Zk are algebraic. Yet another way to see this is to note that a bundle

1The isomorphism is, for any locally free O-module L of finite rank (see [Har77, Props. 6.7 and 6.3]),

Exti
O

(
L ,−)

:= Ri HomO

(
L ,−)∼= Ri HomO

(
O ,−⊗L∨)∼= RiΓ

(−⊗L∨)=: H i (−⊗L∨)
.

9
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E is already determined on a finite infinitesimal neighbourhood `(m), which is a projective
scheme and thus automatically satisfies GAGA.

After choosing coordinates, we can compute the space of extensions explicitly and find
that it can be described as the space of coefficients of the polynomial p that appears in the
transition function T in (2.2) for the bundle E . Precisely, this polynomial may be chosen to
be of the canonical form

p(z,u) =
b(2 j−2)/kc∑

r=1

j−1∑
s=kr− j+1

pr s zsur . (2.7)

Note that in this form, p is always divisible by u, which means that the restriction of E to `
splits as OP1 (− j )⊕OP1 ( j ). We may also consider the slightly more general form

p̃(z,u) =
b(2 j−2)/kc∑

r=0

j−1∑
s=kr− j+1

pr s zsur ,

but note that when p is not divisible by u, then the splitting type of E is in fact lower than j .
This slightly more general notion will be useful from the point of view of deformation theory
below. See [Gas97, Theorem 3.3] for a proof of the general form.

The space of extensions does not solve the moduli problem for vector bundles, as different
extensions may define holomorphically equivalent bundles. Isomorphic bundles must have
the same splitting type, so we start by considering the spaces Ext1

(
O ( j ),O (− j )

)/∼, where ∼
denotes bundle isomorphism. These spaces will have a very complicated topology, but they
give us an explicit handle. Part of this thesis consists of providing a means to decompose
these spaces into finer components that possess a manifold structure.

From the explicit description of p we see that a bundle E splits on the mth infinitesimal
neighbourhood `(m) if and only if p is a multiple of um+1. Generically a bundle will not split
already on the first neighbourhood, and this is the most important case we shall consider.
On the first neighbourhood, we have a result.

Proposition 2.10. If p and p ′ are two polynomials determining respectively two bundles E
and E ′ on Zk of splitting type j , then E |`(1)

∼= E ′|`(1) if and only if p =λp ′ for some λ ∈C\ {0}.

Making the notion of genericity precise amounts to finding a suitable notion of stability
on the moduli of bundles.

Definition 2.11. For each integer j and each k we define

M(Zk ; j ) := Ext1(O ( j ),O (− j )
)/∼

to be the space of extensions of O ( j ) by O (− j ) on Zk up to bundle isomorphism. If E ∈ MZk ( j )
is such an extension, we call E generic if the width wk (E ) and the height hk (E ) of E attain the
minimal value.

Remark 2.12. From the previous section we know the precise value of the lower bound. This
bound is always realised on all spaces Zk by the bundle determined by p(z,u) = zu.

Theorem 2.13. For j ≥ k, M(Zk , j ) has an open, dense subspace homeomorphic to a complex
projective space P2 j−2−k minus a closed subvariety of codimension at least k +1.

It is possible to embed the moduli M(Zk , j ) into M(Zk , j +k) via two elementary transfor-
mations (which we explain presently) and a twist: Let Φ : M(Zk ; j ) →M(Zk ; j +k) be defined

10
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by
Φ(E) = ElmO`( j+k)

(
ElmO`( j )(E)

)⊗O (−k) .

In coordinates, Φ sends the bundle given by ( j , p) to ( j +k, zk u2p).

Theorem 2.14. The map Φ is well defined, injective and a homeomorphism onto its image,
which consists of all bundles in M(Zk ; j +k) that split on the second infinitesimal neighbour-
hood of `.

Open question: How does Φ affect the numerical invariants?

2.6.1 Elementary transformations

An important tool in the study of vector bundles and sheaves is the elementary transfor-
mation, which changes a locally free sheaf over a divisor. It works as follows. Let W be an
algebraic variety, D ⊂ W a Cartier divisor and L ∈ Pic(D) a fixed line bundle on D. If E

is any locally free sheaf on W and r : E → L a surjection that is induced by a surjection
ρ : E |D → L , then E ′ := Ker(r ) is called the elementary transformation of E induced by r ,
written ElmL (E ). Since the divisor D is Cartier, E ′ is locally free. Writing L ′ :=Ker(ρ), we
obtain the display of the elementary transformation:

0 0x x
0 −−−−→ L ′ −−−−→ E |D ρ−−−−→ L −−−−→ 0

t

x x ∥∥∥
0 −−−−→ E ′ −−−−→

F
E −−−−→

r
L −−−−→ 0x x

E (−D) E (−D)x x
0 0

Note that the induced surjection t : E ′ →L ′ gives the inverse elementary transformation (up
to twisting by D).

In local coordinates. Our spaces Zk have one compact divisor `∼=P1 given by

0 −→OZk (−k) −→OZk −→O` −→ 0 ,

In our canonical local coordinates, ` is given by {u = 0} on the chart U and by {zk u = 0} on
the chart V , so the left map is just multiplication by u or zk u on the respective charts. Since
every rank-2 bundle comes with a surjection E →O ( j ), the restriction to ` gives a surjection

r : E →OP1 ( j ) ,

and we are in a position to apply an elementary transformation with respect to r to the
bundle E . In coordinates, r maps a local section (a,b) to the residue of b modulo (u) on the
U -chart. The kernel of r (which is E ′) thus consists of all sections (a,b) for which b vanishes

11



Moduli of bundles on local surfaces and threefolds 12

on `. If E is given by (2.1), then E ′ is an extension is an extension

0 −→O (− j ) −→ E ′ −→O ( j +k) −→ 0 ,

Thus E ′ has transition function

T ′ =
(

z j p ′

0 z− j−k

)
,

and the inclusion F = ( f , f̃ ) : E ′ → E is given by f (a,b) = (a,ub) on U and f̃ (A,B) = (A, zk uB)
on V . Since we must have T ◦ f = f̃ ◦T ′, we compute

T ◦ f

(
a
b

)
= T

(
a

ub

)
=

(
z j a +upb

z− j ub

)
and f̃ ◦T ′

(
a
b

)
= f̃

(
z j a +p ′b
z− j−k ub

)
=

(
z j a +p ′b

z− j ub

)
,

and thus p ′ = up.
The new bundle E ′ now comes with a surjection to OP1 ( j +k), so we can perform another

elementary transformation to arrive at a bundle E ′′ with transition function

T ′′ =
(

z j u2p
0 z− j−2k

)
.

Finally, E ′′(−k) is a rank-2 bundle with vanishing first Chern class and splitting type j +k,
and we see that the map E 7→ E ′′(−k) is given in coordinates by p(z,u) 7→ zk u p(z,u).

For completeness, we record that the inverse transformation is given by the surjection
t : E ′ →L ′ ∼=OP1 (− j ). The map t is given on the U -chart by mapping (a,b) to the residue of
a modulo (u), and on the V -chart by mapping (ã, b̃) to the residue of ã modulo (zk u).

2.7 Stability via the endomorphism bundle

Classical deformation theory of vector bundles on a (compact) surface X says that the obstruc-
tion to deforming a bundle E → X live in the second cohomology H 2(X ; End E) (see [FK74],
and the moduli space is smooth if this obstruction vanishes. In this case, the tangent space
to the moduli space at E is the space of first-order deformations of E , H 1(X ; End E ), modulo
the space of trivial deformations (i.e. deformations into isomorphic bundles) H 0(X ; End E).

In our case we take X = Zk , which is of cohomological dimension one, so the second
cohomology of all coherent sheaves vanishes. Since Zk is not compact, we cannot conclude
that the moduli of vector bundles is a smooth space, and we already saw that this is not the
case even for SL(2)-bundles. However, the bundle (or sheaf) End E still contains valuable
numerical information, which in fact turns out to be equivalent to the information given
by the width and height for instanton bundles. However, this perspective offers another
interpretation of the invariants, and we may ask for a physical interpretation of the non-
instanton bundles.

To be precise, we define two numbers that we will suggestively call h1 and h0. This
notation is concise at the risk of being confusing, but the context should make clear what is
meant. First off, since Zk is the total space of a negative bundle over P1, the cohomology of
End E vanishes in degrees ≥ 2 and is finite-dimensional in degree 1. Next we consider the
zeroth cohomology of End E . It is infinite-dimensional, since Zk is non-compact and H 0 is
the space of global sections. However, the difference of dimensions of H 0 for two different
bundles is finite in a certain sense: Consider the restriction of E to the mth infinitesimal
neighbourhood of `. This space is projective and so Vm(E) := H 0

(
`(m); End(E)|`(m)

)
is finite-

dimensional, although the dimension of this space grows with m. But for each fixed m,

12
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we can compare the dimensions of Vm(E) and Vm(Esplit), where we write Esplit for the split
bundle of the same splitting type as E , so Esplit

∼=O ( j )⊕O (− j ). This difference of dimensions
is independent of m for large values m. Thus we define

h1(E) := h1(Zk ; End(E)
)

, and

h0(E) := h0(`(m); End(Esplit)|`(m)

)−h0(`(m); End(E)|`(m)

)
,

where m is taken sufficiently large so that the expression for h0(E ) stabilises, which happens
for m ≥ (4 j −2)/k.

While the numbers h0(E ) and h1(E ) are analytic invariants of E , they are in fact equivalent
to w(E),h(E) on instanton bundles, where j = nk for some n, via the following relations:

w(E)+h(E) = χ(E) = (
(h1(E)−h0(E))− j

)/
2+ j

/
k

h0(E)+h1(E) = h1(End(Esplit)
)

This gives
h0(E) = n2k −χ , h1(E) = kn(n +1)−2n +χ(E) .

For non-instanton bundles, though, the numbers h0(E) and h1(E) (at least one of them, as
they are not independent) provide additional information on top of w(E),h(E).

2.A Sample computation

We compute explicitly the width and height for a simple, non-trivial example, namely of the
bundle E of splitting type j = 3 on the space Z2 = Tot

(
OP1 (−2)

)
given by p(z,u) = u, so E has

transition matrix

T =
(

z3 u
0 z−3

)
.

The space Z2 has coordinate charts U = {
(z,u)

}
and V = {

(z−1, z2u)
}

. The contraction of ` is

π : Z2 → X2 = SpecR , where R =C[x0, x1, x2]
/

(x0x2 −x2
1) .

Width. To compute Q = (π∗E )∨∨
/
π∗E , we first compute sections of E over `(n) for all n. This

amounts to computing the space of sections (a,b) of E as formal power series a,b ∈C[[z,u]],
subject to the condition that a,b be holomorphic in {z,u} and z−3b, z3a+ub be holomorphic
in {z−1, z2u}. This implies that b has the following form:

b(z,u) = b00 +b01z +b02z2 +b03z3 +���b04z4 +��· · ·
+ b10u +·· ·+b15z5u +����b16z6u +��· · ·
+ b20u +·· ·+b27z7u2 +����b28z8u2 +��· · ·
+ · · ·

All terms zsur in b with s −3 > 2r have to vanish. Now we can compute an expression for a.
Since zs+3 is never holomorphic in {z−1, z2u} for s ≥ 0, there are no terms on `(0). We are left
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with the following:

a(z,u) = ��a00 +��· · ·
+ a10u +a11zu +·· ·
+ a20u2 +a21zu2 +a22z2u2 +·· ·
+ · · ·

Now we consider the expression z3a +ub and pick out every coefficient that must vanish, i.e.
where degz > 2degu . The first few such terms are:

z3u
(
a10 +b03

)= 0 z4u a11 = 0 z5u a12 = 0 . . .

z5u2(a22 +b15
)= 0 z6u2 a23 = 0 . . .

Finally we can write down generators:

β0 =
(
0
1

)
β1 =

(
0
z

)
β2 =

(
0
z2

)
α=

(
u

−z3

)
�
�
�
��

α′ =
(
u2

0

)
We could have written down many more generators, but over the space X2, i.e. over the ring

R = {
x0 = u, x1 = zu, x2 = z2u

}/(
x0x2 −x2

1

)
,

everything else can be expressed in terms of β0,β1,β2,α. (For example, α′ = x0α+x1β2.) It
remains to find the relations among the generators, and we arrive at the complete description
of the R-module

M = 〈β0,β1,β2,α〉R

/(
x1β0 −x0β1, x2β0 −x1β1, x1β1 −x0β2, x2β1 −x1β2

)
.

Application of the Theorem on Formal Functions tells us (in a highly non-trivial fashion)
that Q ∼= coker M

ev−→ M∨∨. Thus we must compute M∨ and thence M∨∨. A moment’s thought
shows:

M∨ = HomR (M ,R) = {
β∨,α∨}

,

where
β∨ = {

βi 7→ xi ,α 7→ 0
}

and α∨ = {
βi 7→ 0,α 7→ 1

}
.

M∨ is already free, so M∨∨ free as well, given by

M∨∨ = {
β∨∨ = {β∨ 7→ 1,α∨ 7→ 0},α∨∨ = {β∨ 7→ 0,α∨ 7→ 1}

}
.

The evaluation map ev: M → M∨∨ acts as follows:

ev(α) =α∨∨ ev(βi ) = xiβ
∨

Thus the only element in M∨∨, seen as a C-vector space, that is not in the image of ev is the
element 1.β∨, so coker(ev) = 〈β∨〉C, which has dimension one, so w(E) = 1.

Height. The height of E is h(E) := h0
(
X2;R1π∗E

)
. But h0 = dim H 0 is just the dimension of

the stalk (R1π∗E)0. Now the dimension is the same for the stalk of the sheaf and the stalk of
the completion of the sheaf, and the latter is computed by the Theorem on Formal Functions:

dim
(
R1π∗E

)
0 = dim

(
R1π∗E

)∧
0 = dim

(
lim←−−

n
H 1(`(n);E |`(n)

))
. (2.8)
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Since the limit stabilises at finite n, the computation is actually easy and amounts to comput-
ing H 1

( ̂̀;E
)
, which we will do now.

An element of H 1 is a section over U ∩V modulo holomorphic sections over U or over V .
We simply write down all such sections. In our case we have exactly two of them:(

z−1

0

)
and

(
z−2

0

)
Thus h(E) = 2.

2.B Algorithmic computation of the invariants

[I can supply here a description of the general computational algorithms for the computa-
tion of height, width, h0 and h1. This appears on my website http://www.maths.ed.ac.

uk/~s0571100/Instanton/ and on the Macaulay 2 website http://www.math.uiuc.edu/
Macaulay2/, but I can omit it if it is not of interest.]
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Chapter 3

Threefolds

3.1 Introduction

In this chapter we study the local moduli problem on complex threefolds, and in the same
way as in Chapter 2 we assume that our threefold W contains an embedded line P1 ∼= `⊂W ,
and the normal bundle of ` will play a crucial role. Unlike in the previous chapter, ` is not of
middle dimension and there is no analogue of the self-intersection number, but instead we
will consider whether ` moves in W or whether it is rigid, or even infinitesimally rigid. After
establishing these properties, we continue to study the local moduli of bundles on W near `
as before.

An important ingredient in the study of the local moduli is extent to which a version
of the GAGA principle holds on the spaces in question. Since the spaces are local P1s and
GAGA holds on `∼=P1, we proceed by studying the infinitesimal neighbourhoods `(m) and
the formal completion ̂̀. We consider three different examples: On the first space, bundles
are filtered and algebraic, on the second they are filtered but not necessarily algebraic, and
on the third there are rank-2 bundles that are not extensions.

In § 3.2 we define the spaces of interest and derive some explicit descriptions. We proceed
to discuss the GAGA property of these spaces in § 3.3 before turning to the moduli problem
proper. Endomorphism bundles are discussed in § 3.4 and numerical invariants in § 3.5 in
preparation for the description of the moduli of bundles in the final § 3.6.

3.2 Local Calabi-Yau threefolds with rational curves

As we are studying spaces with an embedded compact line P1, we reduce to the simplest such
case, which is that of the total space of normal bundle of the line (also called a local P1 by
algebraic geometers). The compact 1-cycles of such a space correspond to the holomorphic
sections of the normal bundle, and they are all rationally equivalent to the zero section.

Local P1s are particularly amenable as they can be covered by two charts only; thus
we perform explicit calculations. Moreover, all coherent cohomology groups vanish for all
degrees but 0 and 1.

Motivated by the question how the moduli of bundles changes under birational transfor-
mation of the base, we are keeping in mind the question of whether ` may be contracted.
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3.2.1 Definitions

We restrict our attention to local P1 spaces W ∼= N`/W that are Calabi-Yau. Since

c1(W ) = c1(P1)+ c1(N`/W ) and N`/W
∼=OP1 (a)⊕OP1 (b) ,

we have a +b = −2. When considering the contraction of a line inside a threefold, then
according to [Jim92] only three essential local models may occur:

W1 := Tot
(
OP1 (−1)⊕OP1 (−1)

)
W2 := Tot

(
OP1 (−2)⊕OP1

)
W3 := Tot

(
OP1 (−3)⊕OP1 (1)

)
In each case we denote by Z the zero-section, so that Z ∼= P1. The spaces have canonical
charts U ∼= C2 ∼= {z,u, v} and V , where respectively V ∼= C2 ∼= {z−1, zu, zv}, {z−1, z2u, v} and
{z−1, z3u, z−1v}. In each case, the canonical bundle is spanned globally by d z ∧du ∧d v , so
we see explicitly that the spaces are Calabi-Yau. Note that the conormal sheaves of W2 and W3

are not ample. (More generally, all the spaces Wi := Tot
(
OP1 (−i )⊕OP1 (i −2)

)
are Calabi-Yau,

but we will not consider them.)

3.2.2 Canonical forms

Let now E be a bundle on one of the complex spaces Wi , i = 1,2,3 of splitting type j . Assume
for now that E is an extension of line bundles

0 −→O (− j ) −→ E −→O ( j ) −→ 0 ,

where O ( j ) is just the pullback of OP1 ( j ), given by the transition matrix

T =
(

z j p(z,u, v)
0 z− j

)
.

(It follows from Theorems 3.10 and 3.11 that the transition matrix of every bundle on W1 and
W2 may be put in this form.) It is necessary that p be of the form p(z,u, v) = up ′(z,u, v)+
v p ′′(z,u, v), for otherwise the bundle E would in fact be of lower splitting type. This is an
important point to which we return in the discussion of deformation spaces.

Proposition 3.1. The extension class p can be reduced to the following form, respectively,

on W1: p(z,u, v) =
2 j−2∑
t=ε

2 j−2−t∑
r=1−ε

j−1∑
s=r+t− j+1

ptr s zsur v t ,

on W2: p(z,u, v) =
∞∑

t=ε

j−1∑
r=1−ε

j−1∑
s=2r− j+1

ptr s zsur v t , and

on W3: p(z,u, v) =
∞∑

t=ε

b 2 j−2+t
3 c∑

r=1−ε

j−1∑
s=3r−t− j+1

ptr s zsur v t ,

where ε ∈ {0,1}.

Definition 3.2 (Canonical extension class). We call the form of p from Proposition 3.1 the
canonical form of the extension.
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Proof of Proposition 3.1. Suppose that E is an extension given by the transition matrix

T =
(

z j p(z,u, v)
0 z− j

)
.

A priori, p is given by a convergent power series

p(z,u, v) =
∞∑

t=ε

∞∑
r=1−ε

∞∑
s=−∞

ptr s zsur v t ,

where ε ∈ {0,1} accounts for the vanishing of p on the zero section u = v = 0. A bundle
isomorphism casts T into the new form

T ′ =
(

z j p ′

0 z− j

)
=

(
α β

γ δ

)(
z j p(z,u, v)
0 z− j

)(
A B
C D

)
, (3.1)

where α, β, γ, δ are holomorphic on V and A, B , C , D are holomorphic on U . In particular,
we consider only C = γ= 0, whence αA = δD = 1, and we can write

T ′ =
(
α β

0 D−1

)(
z j p(z,u, v)
0 z− j

)(
α−1 B

0 D

)
=

(
z j p ′

0 z− j

)
,

with
p ′ =αB z j +βDz− j +αDp . (3.2)

We may fix α= D = 1, say, and use β and B to remove terms from the power series of p:
First, any term ptr s zsur v t with s ≥ j can be removed from p by setting β = 0 and B =

−ptr s zs− j ur v t ; B is holomorphic on U . Thus we only need terms with s ≤ j −1. Secondly,
for fixed r and t , by setting B = 0 and β=−ptr s zs+ j ur v t we remove terms with

r + t − j ≤ s on W1 ,

2r − j ≤ s on W2 , and

3r − t − j ≤ s on W3 .

Finally, we have obtained constraints for s, r and t for the remaining terms in p as follows:

r + t − j +1 ≤ s ≤ j −1 ⇒ r + t ≤ 2 j −2 on W1 ,

2r − j +1 ≤ s ≤ j −1 ⇒ r ≤ j −1 on W2 , and

3r − t − j +1 ≤ s ≤ j −1 ⇒ 3r − t ≤ 2 j −2 on W3 .

The result follows immediately.

Remark 3.3. If instead we also allow terms which are not multiples of u or v , we include
extensions of lower splitting type. These more general functions are obtained by starting
both sums over r and t at zero. We write, for example on W1,

p̃(z,u, v) =
2 j−2∑
t=0

2 j−2−t∑
r=0

j−1∑
s=r+t− j+1

ptr s zsur v t ,

which determines an extension of splitting type ≤ j (but is not in canonical form if the
splitting type is strictly less than j ).

Corollary 3.4. If λ 6= 0, then p and λp determine isomorphic bundles.

18



Moduli of bundles on local surfaces and threefolds 19

Proof. In Equation (3.2), let β= B = 0, α= 1 and D =λ.

On the first infinitesimal neighbourhood Z (1), the converse of Corollary 3.4 is true. We
are working on the formal completion Ẑ , so local section of the structure sheaf OẐ is a formal
power series in u and v and convergent in z. Peternell’s Existence Theorem (see Remark
1.5) asserts that a bundle on Ẑ extends to a holomorphic bundle on an actual open (in the
analytic topology) neighbourhood of Z . Thus we are allowed to let the entries of the matrices
in the isomorphism (3.1) be formal power series. It is always possible to choose a nowhere
vanishing formal power series with a finite number of prescribed coefficients, so that we can
always make sure that the coordinate change matrices have nowhere vanishing determinant.

Proposition 3.5 (Bundles on Z (1)). On the first infinitesimal neighbourhood Z (1) in any of the
three spaces W1, W2 or W3, the only isomorphism of bundles is scaling. That is, two bundles
E1|Z (1) and E2|Z (1) given by transition matrices(

z j p
0 z− j

)
and

(
z j q
0 z− j

)
are isomorphic if and only if q =λp for some λ ∈C×.

Proof. The “if”-part is just Corollary 3.4.
For the “only if”-part, first note that the restriction to the first neighbourhood Z (1) implies

that p and q only contain powers of u and v of total degree 1. It follows from Proposition 3.1
that p and q only contain certain powers of zs , namely those with

2− j ≤ s ≤ j −1 on W1,
in zsu : 3− j ≤ s ≤ j −1
in zs v : 1− j ≤ s ≤ j −1

}
on W2, and

in zsu : 4− j ≤ s ≤ j −1
in zs v : − j ≤ s ≤ j −1

}
on W3.

(3.3)

Next, the two bundles are isomorphic only if there exist matrices holomorphic on the respec-
tive charts such that (

z j p
0 z− j

)(
A B
C D

)
=

(
α β

γ δ

)(
z j q
0 z− j

)
.

Here A,B ,C ,D are power series on U∩Z (1) andα,β,γ,δ on V ∩Z (1), and we write, for instance,
A(z,u, v) = a00(z)+a10(z)u +a01(z)v etc., where the coefficients are power series in z, and
similarly for respectively α(z−1, zu, zv), α(z−1, z2u, v) and α(z−1, z3u, z−1v).

Comparing the two sides of the equation term by term gives four equations. We will only
go through the case of W1 here; for the other two just replace zu and zv in the following by
z2u and v for W2 or by z3u and z−1v for W3.(

a00(z)+a10(z)u +a01(z)v
)
z j +pc00(z) = (

α00(z−1)+α10(z−1)zu +α01(z−1)zv)z j (3.4)

z− j (c00(z)+ c10(z)u + c01(z)v
)= (

γ00(z−1)+γ10(z−1)zu +γ01(z−1)zv
)
z j (3.5)

(
b00(z)+b10(z)u +b01(z)v

)
z j +pd00(z) =
α00(z−1)q + (

β00(z−1)+β10(z−1)zu +β01(z−1)zv
)
z− j (3.6)
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Moduli of bundles on local surfaces and threefolds 20

z− j (d00(z)+d10(z)u +d01(z)v
)=
γ00(z−1)q + (

δ00(z−1)+δ10(z−1)zu +δ01(z−1)zv
)
z− j (3.7)

The polynomials p and q are divisible by either u or v , so comparing the terms in (3.4)
and (3.7) that are independent of both u and v gives a00(z) =α00(z−1) and d00(z) = δ00(z−1),
whence all four are constants and a00 =α00 and d00 = δ00.

Next, equating terms in u or v in (3.6) gives(
b10(z)u +b01(z)v

)
z j +pd00 =α00q + (

β10(z−1)zu +β01(z−1)zv
)
z− j .

By the conditions (3.3) on p and q , we must have

b10(z)u +b01(z)v = 0 and β10(z−1)zu +β01(z−1)zv = 0

(whence b10 = 0 = b01 and β10 = 0 =β01), and so pd00 =α00q .

The proof is finished by showing that α00d00 6= 0. But the terms independent of both u
and v in (3.6) yield b00(z)z j =β00(z−1)z− j , whence b00 = 0 =β00. Thus over Z the coordinate
change has determinant a00d00 =α00d00 6= 0.

Remark 3.6. Inspection of the proof of Proposition 3.1 shows that the conditions (3.3) and
the equations (3.4)–(3.7) match up precisely, and that the conclusions of Proposition 3.5 are
in fact valid for all spaces Wi = Tot

(
OP1 (−i )⊕OP1 (i −2)

)
.

Remark 3.7. Another way of seeing extensions of the form (2.1) is by considering the isomor-
phism1

Ext1
OWi

(
O ( j ),O (− j )

)∼= H 1(Wi ; O (− j )⊗O ( j )∨
)∼= H 1(Wi ; O (−2 j )

)
. (3.8)

Direct computation shows that this is precisely the space of all coefficients in the generalised
extension form from Remark 3.3, and the space of extensions E that satisfy E |Z ∼=OP1 (− j )⊕
OP1 ( j ) is thus precisely the subset of Ext1

(
OP1 ( j ),OP1 (− j )

)
consisting of extension classes of

the form p(z,u, v) = up ′(z,u, v)+ v p ′′(z,u, v). Proposition 3.1 says that all terms in p that lie
outside the given range are coboundaries with respect to this H 1.

In fact, computations of H 1-groups will be useful once more: The height of a rank-2
bundle E near an exceptional set, as defined by Equation (2.6), can be computed by the
Theorem on Formal Functions (2.8) as follows:

h(E) := h0(W ′; R1π∗E
)= dim H 0(W ′; R1π∗E

)
= dim

(
R1π∗E

)
0 = dim

lim←−−
n

H 1(Z (n); E
) .

But since E is algebraic in the cases which we consider (namely on W1 and on the hypersur-
faces Di ), the limit in the right-most term stabilises at finite n, and it remains to compute H 1

formally on Ẑ . To this end, we present a canonical form of 1-cocycles representing elements
of H 1

(
Ẑ ; E

)
:

1The isomorphism is, for any locally free O-module L of finite rank (see [Har77, Props. 6.7 and 6.3]),

Exti
O

(
L ,−)

:= Ri HomO

(
L ,−)∼= Ri HomO

(
O ,−⊗L∨)∼= RiΓ

(−⊗L∨)=: H i (−⊗L∨)
.
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Proposition 3.8 (Canonical cocycle). Let E be an extension as in Proposition 3.1. A 1-cocycle
σ ∈ H 1(E) has the canonical representative, respectively,

on W1: σ=
j−2∑
t=0

j−2−t∑
r=0

−1∑
s=r+t− j+1

zsur v t
(

atr s

0

)
,

on W2: σ=
∞∑

t=0

b j−2
2 c∑

r=0

−1∑
s=2r− j+1

zsur v t
(

atr s

0

)
, and

on W3: σ=
∞∑

t=0

b t+ j−2
3 c∑

r=0

−1∑
s=3r−t− j+1

zsur v t
(

atr s

0

)
.

Remark 3.9. Cocycles in H 1
(
Di ; E

)
are obtained from this by setting v = 0.

Proof of 3.8. A priori, σ is given by

σ=
(

a
b

)
=

∞∑
t=0

∞∑
r=0

∞∑
s=−∞

(
atr s

btr s

)
zsur v t .

Terms with non-negative powers of z are holomorphic on U , so we can restrict to s ≤−1 and
stay in the same cohomology class. Now on V ,

Tσ=
(

z j a +pb∑
t
∑

r
∑−1

s=−∞ zs− j ur v t

)
.

Since j ≥ 0, the second entry is holomorphic on V , and Tσ is cohomologous to

Tσ∼
(

z j a +pb
0

)
.

Going back to U , we find

T −1Tσ∼
(

a + z− j p
∑

t
∑

r
∑−1

s=−∞ btr s zsur v t

0

)
.

Since no power of z in p is greater than j −1, we can relabel the coefficients and write

T −1Tσ∼
(∑∞

t=0
∑∞

r=0
∑−1

s=−∞ a′
tr s zsur v t

0

)
.

Going to V one last time, we find that the terms in

z j
∞∑

t=0

∞∑
r=0

−1∑
s=−∞

a′
tr s zsur v t

are holomorphic on V and can be discarded if

s + j ≤


r + t on W1,

2r on W2, and

3r − t on W3.
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This constrains the exponents as follows:

C − j +1 ≤ s ≤−1 , where C := r + t , 2r, 3r − t respectively.

So C ≤ j −2, and together with r, t ≥ 0, the result follows.

3.3 Algebraicity and filtrability

In Chapter 2 we made use of the fact that bundles on the surfaces Zk were algebraically
filtrable, which is a consequence of the ampleness of the conormal bundle of the compact
line inside the total space. We can apply the exact same reasoning to derive similar results for
the spaces W1 and W2 and to see why W3 does not possess these properties.

Theorem 3.10. Every holomorphic vector bundle on Tot
(
OP1 (−1)⊕OP1 (−1)

)
is filtrable and

algebraic.

Proof. This is a direct application of Theorem 2.2.

Theorem 3.11. Let Z be the zero section of OP1 (−2)⊕OP1 (0). Fix an integer r ≥ 1 and a
holomorphic rank-r vector bundle E on Ẑ . Let a1 ≥ ·· · ≥ ar be the splitting type of E |Z . Then
there exist vector bundles Fi on Ẑ , 0 ≤ i ≤ r , such that Fr := E, F1 := La1 , F0 := {0} and Fi |Z has
rank i and splitting type a1 ≥ ·· · ≥ ai , and such that there are r −1 exact sequences on Ẑ (for
2 ≤ i ≤ r )

0 −→ Lai −→ Fi −→ Fi−1 −→ 0 , (3.9)

where Lai
∼=O (ai ).

Proof. The result is obvious if r = 1. Hence we may assume r ≥ 2 and that the result is
true for all vector bundles with rank at most r −1. By assumption there is an injective map
j : OZ (ar ) → E |Z on Z such that coker( j ) is a rank-(r −1) vector bundle on Z with splitting
type a1 ≥ ·· · ≥ ar−1. The map j gives a nowhere-zero section s of E(−ar )|Z . Let us show that
this section extends over a neighbourhood of Z : There is an exact sequence

0 −→ S t (N∗
Z ,W2

) −→O (t+1)
Z −→O (t )

Z −→ 0 , (3.10)

where S t (N∗
Z ,W2

) is the t th symmetric power of the conormal sheaf of Z in W2. In this case,
we have NZ ,W2

∼=OZ (−2)⊕OZ , therefore,

S t (N∗
Z ,W2

)∼= t⊕
k=0

OZ (2k) .

After tensoring by the bundle E(−ar ), the exact sequence (3.10) becomes

0 −→ E(−ar )⊗
 t⊕

k=0
OZ (2k)

−→ E(−ar )⊗O (t+1)
Z −→ E(−ar )⊗O (t )

Z −→ 0 ,

thus inducing the long cohomology sequence

· · · −→ H 0(Z ;E(−ar )⊗O (t+1)
Z

)−→ H 0(Z ;E(−ar )⊗O (t )
Z

)−→ t⊕
k=0

H 1(Z ;E(−ar+2k)
)−→ ·· · .

Note that H 0
(
Z ;E(−ar )⊗O (t )

Z

)
is the space of global sections of E(−ar ) on the t th formal

neighbourhood of Z in W2; moreover, the obstruction to extending a section from the t th
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formal neighbourhood to the (t +1)st one lives in

t⊕
k=0

H 1(Z ;E(−ar +2k)
)

.

However, since E (−ar ) is a bundle of degree
∑r−1

i=1 (ai −ar ) ≥ 0, E (−ar +2k) is of non-negative
degree for 0 ≤ k ≤ t , and thus all the cohomology groups H 1

(
Z ;E(−ar + 2k)

)
vanish for

0 ≤ k ≤ t . Thus any section of E (−ar ) on the t th formal neighbourhood extends to the (t +1)st.
Hence, by Grothendieck’s existence theorem ([Gro61, 5.1.4]), the section s extends to an
actual neighbourhood of Z in W2, and consequently there is an exact sequence on W2 of the
form

0 −→ Lar −→ E −→ Fr−1 −→ 0 .

Corollary 3.12. Every algebraic vector bundle on W2 = Tot
(
OP1 (−2)⊕OP1

)
is filtrable.

Proof. Every such bundle is already determined on a finite infinitesimal neighbourhood of
Z .

Unlike in the case of W1, however, there are non-algebraic bundles on Ẑ . It follows from
Peternell’s Existence theorem, though, that all such bundles do in fact extend to an analytic
neighbourhood of Z .

3.4 The endomorphism bundle

If the bundle E is given by transition matrix T = ( z j p
0 z− j

)
, then the bundle End(E) = E ⊗E∗ is

given by the transition matrix T ⊗T T . After a convenient change of coordinates given by

P :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

= P−1 ,

we will express the transition matrix of E ⊗E∗ as

S := P
(
T ⊗T T )

P =


1 z j p z− j p p2

0 z2 j 0 z j p
0 0 z−2 j z− j p
0 0 0 1

 , so S−1 =


1 −z− j p −z j p p2

0 z−2 j 0 −z− j p
0 0 z2 j −z j p
0 0 0 1

 .

We are interested in H i
(
Zk ;End E

)
for i = 0,1. Like before, H 0 is the space of sections

(a,b,c,d) ∈ Γ(U ;End E) =: ΓU such that S(a,b,c,d) ∈ ΓV , while H 1 is the space of sections
ΓU∩V modulo ΓU ⊕ΓV .

A typical component of a section on U is given by a(z,u) =∑
r,s≥0 ar s zsur , and a section

on U ∩V is given by a(z,u) =∑
r≥0

∑∞
s=−∞ ar s zsur . We have

S


a
b
c
d

=


a + z j pb + z− j pc +p2d

z2 j b + z j pd
z−2 j c + z− j pd

d

 .
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We use this explicit form in the sequel to compute numerical invariants of the endomorphism
bundle End(E).

3.5 Numerical invariants

By contrast to the case of bundles on surfaces, it is rather more involved to find numerical
invariants of bundles on our threefolds Wi , i = 1,2,3. First, only on W1 is the zero section Z
contractible, so the concepts of width and height only make sense on W1, but not on W2 or W3.
Moreover, for codimensional reasons the width always vanishes on W1 (see [BGK09, Lemma
5.2]). In this section we define several new numerical invariants that contain geometric
information and provide a way of partitioning the moduli. These new numbers are “partial”
invariants arising from restricting to a subspace, and invariants of the endomorphism bundle.

The spaces Wi contain two distinguished subsurfaces D1 and D2 (in fact degree-1 Cartier
divisors), which are given in our canonical coordinates by the equations D1 ∩U = {v = 0}
and D2 ∩U = {u = 0} on the U -chart and by D1 ∩V = {zi v = 0} and D2 = {z2−i u = 0} on the
V -chart. By restricting to these surfaces, we define the following partial invariants :

Definition 3.13.

w ′(E) = w(E |D1 ) w ′′(E) = w(E |D2 )

h′(E) = h(E |D1 ) h′′(E) = h(E |D2 ) (3.11)

Note that on W1 both subspaces D1 and D2 are isomorphic to Z1 = Tot
(
OP1 (−1)

)
. On

W2, we have D2
∼= Z2 = Tot

(
OP1 (−2)

)
, but D1

∼=C2, so we will only consider the restriction of
bundles to D2. (In fact, we have an entire families of divisors from the pencils spanned by D1

and D2. We will see this again later when we look at examples of moduli.)
Next we examine the endomorphism bundle End(E), which behaves very differently on

W1 and W2. The space W1 is very similar to the surface Z1 in many ways. On W1, the first
cohomology group of End(E) is finite-dimensional, so its dimension is an invariant. We
define:

h1(E) := h1(W1; End E
)

∆1 := h1(W1; End(Esplit)
)−h1(W1; End(E)

)
(3.12)

The zeroth cohomology group of End E is infinite-dimensional, and we employ the same
strategy as on Zk : The infinitesimal neighbourhoods Z (m) are projective schemes, so the
restrictions of End(E ) to them have finite-dimensional cohomologies. Also, we can compute
those dimensions for the endomorphism bundle of the split bundle of the same splitting
type as E (denoted by Esplit) and compare them. As m increases, this difference is eventually
constant, and this gives our second invariant:

∆0 := lim
n→∞

(
h0(W1; End(Esplit)|`(m)

)−h0(W1; End(E)|`(m)

))
(3.13)

The numbers we have just defined are not independent and satisfy several relations.

Proposition 3.14. For all rank-2 bundles E on X = Zk ,W1,W2,

h1(X ; End E |`(m)

)−h0(X ; End E |`(m)

)= h1(X ; End(Esplit)|`(m)

)−h0(X ; End(Esplit)|`(m)

)
.

Proof. We can express the statement in terms of the Hilbert polynomial

φF (m) (n) :=χ(
F (m)(n)

)= h1(X ; F |`(m) (n)
)−h0(X ; F |`(m) (n)

)
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for any coherent sheaf F on X ; then the statement is

φEnd E (m) (0) =φEnd E (m)
split

(0) .

But in fact we haveφEnd E (m) (n) =φE (m)
split

(n) for any n and m, since the Hilbert polynomial is ad-

ditive for short exact sequences of coherent sheaves over projective schemes (see Proposition
3.16 below), and E (m) is the extension

0 −→O`(m) (− j ) −→ E (m) −→O`(m) ( j ) −→ 0 .

Thus both End E and End Esplit have a filtration

0 −→ F1 −→ F2 −→ F3 −→ F4 −→ 0 ,

where F1
∼=O (−2 j ), F2

/
F1

∼=O , F3
/

F2
∼=O , F4

/
F3

∼=O (2 j ), and thus their Hilbert polynomials
coincide.

Corollary 3.15. For all rank-2 bundles E on X = Zk ,W1, we have ∆0(E) =∆1(E), or equiva-
lently ∆0(E)+h1(E) = h1

(
X ; End(Esplit)

)
.

Proof. This follows from Proposition 3.14 by fact that H 1(X ; End E ) is already determined on
a finite neighbourhood `(m) ⊂ X and by unravelling the definitions of ∆0 and ∆1.

Proposition 3.16. Suppose (X ,OX ) is a projective scheme with a fixed, ample twisting sheaf
OX (1), and 0 →F ′ →F →F ′′ → 0 a short exact sequence of coherent OX -sheaves. Then the
Hilbert polynomials satisfy φF =φF ′ +φF ′′ .

Proof. By definition of ampleness, there exists a number n such that E (n) is generated
by global sections for E = F ′,F ,F ′′, and thus H i (X ; E ) = 0 for i > 0, and thus φE (m) =
h0

(
X ; E (m)

)
for m ≥ n. The short exact sequence of the hypothesis induces a long exact

sequence

0 −→ H 0(X ; F ′(m)
)−→ H 0(X ; F (m)

)−→ H 0(X ; F ′′(m)
)−→(((((((H 1(X ; F ′(m)

)
,

and the result follows.

Lemma 3.17. Let E be an extension of type 2.1 with splitting type j on either Zk or W1. Then
the Hilbert polynomial of E |`m is

n 7→χ
(
E (m)(n)

)
:=∑

i
(−1)i hi (`(m); E(n)

)={
(m +1)(km +2+2n) on Zk , and
1
3 (m +2)(m +1)(2m +3n +3) on W1,

independent of the extension class, and independent of the splitting type j . Similarly, the
Hilbert polynomial of the endomorphism bundle End E |`(m) is 2χ

(
E (m)(n)

)
.

Proof. It follows from the proof of Proposition 3.14 that the Hilbert polynomials in question
are determined by the Hilbert polynomial of the line bundles O`(m) (p) for all p. Since O`(m) (1)
is ample, the higher cohomology of O`(m) (p) vanishes for sufficiently large p. (We can verify
this by direct computation.)

Being a polynomial, the Hilbert polynomial is determined by finitely many values, so
it suffices to compute φEnd E (m) (n) = h0

(
`(m); O`(m) (p)

)
for large p. By the additivity of the

Hilbert polynomial (Proposition 3.16) and the fact that E and End E have filtrations by line
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bundles (as given in the proof of Proposition 3.14) which restrict to filtrations on every
infinitesimal neighbourhood `(m), we compute:

φE (m) (n) = φO`(m) (− j )(n)+φO`(m) ( j )(n)

φEnd E (m) (n) = φO`(m) (−2 j )(n)+2φO`(m) (n)+φO`(m) (2 j )(n)

We conclude this proof by computing H 0
(
`(m); O (p)

)
. Now we have to consider the

spaces Zk and W1 separately.

On`(m) ⊂ Zk , a section a ∈O (p)(U ) is a(z,u) =∑m
r=0

∑∞
s=0 ar s zsur such that

∑
r,s ar s zs−p ur

is holomorphic in (z−1, zk u), i.e. s −p ≤ kr . Thus

a(z,u) =
m∑

r=0

kr+p∑
s=0

ar s zsur ,

which has 1
2 (m +1)(km +2+2p) =:φO (p) coefficients.

On `(m) ⊂W1, a section a ∈O (p)(U ) is a(z,u, v) =∑m
t=0

∑m−t
r=0

∑∞
s=0 atr s zsur v t such that∑

t ,r,s atr s zs−p ur v t is holomorphic in (z−1, zu, zv), i.e. s −p ≤ r + t . Thus

a(z,u, v) =
m∑

t=0

m−t∑
r=0

r+t+p∑
s=0

atr s zsur v t ,

which has 1
6 (m +2)(m +1)(2m +3p +3) =:φO (p) coefficients.

Putting it all together, we have

φE (m) (n) = φO (− j +n)+φO ( j +n) ,

φEnd E (m) (n) = φO (−2 j +n)+2φO (n)+φO (2 j +n) ,

which gives the desired functions.

On W2 the situation is different. Since W2
∼= Z2 ×C, the Künneth formula shows that both

the zeroth and the first cohomology groups of End(E) are infinite-dimensional. But when
we use the same strategy and compare the dimensions of the cohomology groups of the
restrictions to the mth infinitesimal neighbourhood of End(E) and End(Esplit), we find that
their difference increases linearly in m.

In fact, more is true. Rearranging the equation of Propositon 3.14, we see that

h0(X ; End(Esplit)|X )
)−h0(X ; End E |X

)= h1(X ; End(Esplit)
)−h1(X ; End E |X

)= c m +d ,

so we obtain two numbers, the slope c and the intercept d of the dimension difference
function. (If we had made the same definition on W1, we would just get c = 0 and d =∆0 =∆1.)

Example values on W1 are tabulated in Table 3.1 and on W2 in Table 3.2, and we summa-
rize the numerical invariants that we can compute on the spaces W1, W2 and W3:

W1 height, h′, h′′, w ′, w ′′, ∆0, ∆1, h1

W2 h′′, w ′′, c, d
W3 h′′, w ′′

Conjecture: On the surface Zk , we have w(E)+h(E) =χ(E) = h1−∆0− j
2 + j

k .
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j p ∆0 ∆1 h1 (w ′,h′) (w ′′,h′′) height

3 0 0 0 35 (6,3) (6,3) 4
3 u 15 15 20 (1,2) (6,3) 3
3 zu 15 15 20 (1,2) (6,3) 3
3 v +u 15 15 20 (1,2) (1,2) 3
3 v + zu 18 18 17 (1,2) (1,2) 2
3 z2u 10 10 25 (3,2) (6,3) 3
3 z−1u 10 10 25 (3,2) (6,3) 3
3 z−1u +u 15 15 20 (1,2) (6,3) 3
3 z−1u + zu 15 15 20 (1,2) (6,3) 3
3 z−1u + z2u 15 15 20 (1,2) (6,3) 3
3 z−1u + z2v 16 16 19 (3,2) (3,2) 2
3 z−1v + z2u 16 16 19 (3,2) (3,2) 2
3 z−1u + z−1v 10 10 25 (3,2) (3,2) 3

Table 3.1: Example data on W1. Observe that h1 (or ∆1) is a finer measure of genericity than
the height.

j p c0 d0 c1 d1 H (w ′′,h′′)

3 0 0 0 0 0 0 (2,2)
3 u 2 0 2 9 0 (1,2)
3 zu 2 1 2 9 2 (0,2)
3 z2u 2 1 2 9 0 (1,2)
3 z2u +u 2 1 2 9 2 (0,2)
3 z−2v 3 −3 3 12 6 (2,2)
3 z2v 3 0 3 12 3 (2,2)
3 z2v +u 3 0 3 13 4 (1,2)
3 z−1v 4 −2 4 16 3 (2,2)
3 zv 4 0 4 16 4 (2,2)
3 u + zv 4 0 4 17 5 (1,2)
3 u + z−1v 4 −2 4 16 6 (1,2)
3 zu + z−1v 4 −2 4 16 6 (0,2)
3 v 5 −1 5 20 6 (2,2)
3 u + v 5 −1 5 20 6 (1,2)
3 zu + v 5 −1 5 20 6 (0,2)
3 zv + v 5 −1 5 20 6 (2,2)

Table 3.2: Example data on W2.
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Space Split bundle E j Generic bundle G j

Zk , k = 2n
−z(zn+1 + zn + z +1)

(z −1)2(zk −1) zk+2 − z3 − z2 − z

(z −1)2(zk −1)
Zk , k = 2n +1

−z(2zn+1 + z +1)

(z −1)2(zk −1)

W1
z(z +6)+1

(z −1)4

z(−z2 +2z +1)

(z −1)4

Table 3.3: Generating functions for h1(End E) on various spaces for the split and the generic
bundle of splitting type j (data for G j only valid for j ≥ k); the value is the j th coefficient in
the Taylor series.

New invariant? It appears that on W2 we always have c0 = c1. Therefore we can define a
new number

H(E) := lim
m→∞

(
h1(W2; End Esplit|`(m) )−h1(W2; End E |`(m) )

)
− (

h0(W2; End Esplit|`(m) )−h0(W2; End E |`(m) )
)= lim

m

(
φEsplit,m(0)−φE ,m(0)

)
,

where we used the notation “H” to indicates the relation to the Hilbert polynomials.

Remark 3.18. The corresponding quantity H on the space W1 is always zero, which is equiv-
alent to the identity ∆0 =∆1 proved above.

Direct computation lead us to discover a compact expression for the number h1(End E)
on the spaces Zk and W1, where E is either the generic or the split bundle of splitting type j
(with j ≥ k on Zk ).

Definition 3.19. A power series of the form g (z) =∑∞
j=0 a j z j is called a generating function

for the sequence (a j )∞j=0. Hence, a j = 1

j !

d j g

d z j

∣∣∣
z=0

.

In Table 3.3 we present the generating functions for the series aX ,E
j := h1(End E) on the

spaces Zk and W1 for the generic and the split bundle of splitting type j . A few series for
special values can be listed explicitly:

• For the split instanton bundle E j , j = kn on Zk , h1(Zk ; End E j ) = n(2nk +k −2).

• For a generic instanton bundle G j , j = kn on Zk , we have h1(Zk ; EndG j ) = n(nk +
2k −2)−1 for k ≥ 2 and h1(Z1; EndG j ) = j 2.

• On W1, we have for the split bunlde E j , h1(W1; End E j ) = (4 j 3 − j )/3. This equals the
number of coefficients in the generalised extension class p̃ in Remark 3.3.

3.6 Moduli

If we restrict our attention to the moduli space of bundles that are extensions of line bundles
and do not split on the first infinitesimal neighbourhood, we can apply Equation 1.1 to all
three of the spaces W1, W2 and W3.
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Proposition 3.20. The part of M(Wi ; j ), i = 1,2,3, which consists of extensions that do not
split on the first infinitesimal neighbourhood Z (1) is smooth and has dimension γ1 −1, i.e.

dim
(
M( j )|generic

)= 4 j −5 for j ≥ 2 .

Further, the generic set of M(1) is empty on W1, a point on W2 and one-dimensional on W3.

Proof. Let Cγ1 be the space of coefficients p10s and p01s of p. By Proposition 3.5 the only
isomorphisms on `(1) are scaling, and thus M( j )|generic is obtained by projectivising the open
subset of generic coefficients of the affine space Cγ1 .

Now we just compute γ1 directly as in Equation (1.1): We have F =OP1 (− j )⊕OP1 ( j ), so

End F ∼=OP1 (−2 j )⊕O⊕2
P1 ⊕OP1 (2 j ) ∼= (End F )∨ .

Also,

N`,X1 =OP1 (−1)⊕2 N`,X2 =OP1 (−2)⊕OP1 N`,X3 =OP1 (−3)⊕OP1 (1) ,

and by Serre duality,

γ1 = h0(`; (End F ⊗N∗
`,Xi

)∨⊗ωP1

)
= h0(`; (End F )∨⊗N`,Xi ⊗ωP1

)
= 4( j −1) for all Xi and j ≥ 2.

The results for j = 1 follow from the same computation.

Remark 3.21. The result is of Proposition 3.20 is sharp among the spaces Wi in the sense
that it is only true for i = 1,2,3; for any i > 3 the value of γ1 is greater than 4( j −1).

3.6.1 Bundles on W1

The space W1 := Tot
(
OP1 (−1)⊕OP1 (−1)

)
, also known as the space of the simple flop, was

already studied in passing in [BGK09]. Here we present a more detailed treatment, which
also illustrates the connection between the parameter space of bundles and the moduli of
isomorphism classes of extensions. We give an explicit description of M(W1; j ) for small j :

Proposition 3.22 (Moduli on W1 for j = 0,1).
Let E be a bundle on W1 of splitting type j = 0. Then E ∼=O⊕2, i.e. E is trivial.
Let E be a bundle on W1 of splitting type j = 1. Then E ∼=O (1)⊕O (−1), i.e. E splits.

Proof. This follows immediately from Proposition 3.1: On W1 for j = 0 or j = 1 we can
always write the extension as p = 0, so every rank-2 bundle of this splitting type is the split
bundle.

Remark 3.23. Thus there are no “generic” bundles of splitting type 0 or 1 on W1, i.e. no
bundles that do not split on Z (1).

Proposition 3.24 (Moduli on W1 for j = 2). Let E be a rank-2 vector bundle on W1 given by
the transition matrix (

z2 p(z,u, v)
0 z−2

)
.

The space of isomorphism classes of such bundles is the set{(
p010, p011, p100, p101

)
, p021, p201, p111

}
⊆C7

29



Moduli of bundles on local surfaces and threefolds 30

modulo a set of relations presented at the end of the proof.

Proof. By Proposition 3.1, a bundle on W1 with splitting type j = 2 is determined by its
extension class

p(z,u, v) = (p010 +p011z)u + (p100 +p101z)v +p021zu2 +p201zv2 +p111zuv .

Suppose we have two such bundles E and E ′, given respectively by extension classes p and q .
We write p|Z (1) for the restriction to the first formal neighbourhood, i.e. to terms that have
total degree ≤ 1 in u, v ; so

p|`1 (z,u, v) = (p010 +p011z)u + (p100 +p101z)v ,

and similarly for q .

If E ∼= E ′, then by Proposition 3.5, p|Z (1) = λq|Z (1) for some λ ∈ C×, and by rescaling we
may assume that λ= 1. (We return to this point at the end of the proof.) Now we identify
sufficient conditions for an isomorphism: The isomorphism, if it exists, can be written as(

α β

γ δ

)
=

(
z2 p
0 z−2

)(
A B
C D

)(
z−2 −q

0 z2

)
=

(
A+ z−2pC z4B + z2(pD −q A)−pqC

z−4C D − z−2qC

)
,

where A,B ,C ,D are holomorphic on U ∩ Ẑ and α,β,γ,δ on V ∩ Ẑ , i.e. power series in (z,u, v)
or (z−1, zu, zv), respectively. As usual we write A =∑

atr s zsur v t etc.

First, the condition that the (2,1)-entry be holomorphic in (z−1, zu, zv) implies

C =
∞∑

t=0

∞∑
r=0

r+t+4∑
s=0

ctr s zsur v t .

Next, the condition of holomorphy of the diagonal entries yields the following relations
for the terms of the power series A and D :

−


a012
a013
a014
a015

=


p011 p010 0 0

0 p011 p010 0
0 0 p011 p010
0 0 0 p011




c001
c002
c003
c004



−


a102
a103
a104
a105

=


p101 p100 0 0

0 p101 p100 0
0 0 p101 p100
0 0 0 p101




c001
c002
c003
c004



−


a023
a024
a025
a026

=


p011 p010 0 0

0 p011 p010 0
0 0 p011 p010
0 0 0 p011




c012
c013
c014
c015

+


p021 0 0 0

0 p021 0 0
0 0 p021 0
0 0 0 0




c002
c003
c004
c005



−


a203
a204
a205
a206

=


p101 p100 0 0

0 p101 p100 0
0 0 p101 p100
0 0 0 p101




c102
c103
c104
c105

+


p201 0 0 0

0 p201 0 0
0 0 p201 0
0 0 0 0




c002
c003
c004
c005



−


a113
a114
a115
a116

=


p101 p100 0 0

0 p101 p100 0
0 0 p101 p100
0 0 0 p101




c012
c013
c014
c015

+


p011 p010 0 0

0 p011 p010 0
0 0 p011 p010
0 0 0 p011




c102
c103
c104
c105

+


p111 0 0 0

0 p111 0 0
0 0 p111 0
0 0 0 0




c002
c003
c004
c005


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
d012
d013
d014
d015

=


p011 p010 0 0

0 p011 p010 0
0 0 p011 p010
0 0 0 p011




c001
c002
c003
c004




d102
d103
d104
d105

=


p101 p100 0 0

0 p101 p100 0
0 0 p101 p100
0 0 0 p101




c001
c002
c003
c004




d023
d024
d025
d026

=


p011 p010 0 0

0 p011 p010 0
0 0 p011 p010
0 0 0 p011




c012
c013
c014
c015

+


p021 0 0 0

0 p021 0 0
0 0 p021 0
0 0 0 0




c002
c003
c004
c005




d203
d204
d205
d206

=


p101 p100 0 0

0 p101 p100 0
0 0 p101 p100
0 0 0 p101




c102
c103
c104
c105

+


p201 0 0 0

0 p201 0 0
0 0 p201 0
0 0 0 0




c002
c003
c004
c005




d113
d114
d115
d116

=


p101 p100 0 0

0 p101 p100 0
0 0 p101 p100
0 0 0 p101




c012
c013
c014
c015

+


p011 p010 0 0

0 p011 p010 0
0 0 p011 p010
0 0 0 p011




c102
c103
c104
c105

+


p111 0 0 0

0 p111 0 0
0 0 p111 0
0 0 0 0




c002
c003
c004
c005



Lastly, the (1,2)-entry,
z4B + z2(pD −q A)−pqC ,

has to be made holomorphic in (z−1, zu, zv). Since z4B can be chosen to cancel higher
terms, we only need to consider those terms zsur v t with s > r + t and s < 4 in the expression
z2(pD −q A)−pqC .

Recall that A and D are of the form 1+u(. . .)+v(. . .) and that we have already set p|Z (1) =
q|Z (1) . Thus the coefficients of u and v are zero. It remains to find the coefficients of the terms
u2, v2 and uv . From this we get three equations:

0 = (p021 −q021)− c003p2
010 −2c002p010p011 − c001p2

011

+p010(d011 −a011)+p011(d010 −a010) (3.14)

0 = (p201 −q201)− c003p2
100 −2c002p100p101 − c001p2

101

+p100(d101 −a101)+p101(d100 −a100) (3.15)

0 = (p111 −q111)−2c003p010p101 −2c002(p010p101 +p011p100)

−2c001p011p101 +p100(d011 −a011)+p010(d101 −a101)

+p101(d010 −a010)+p011(d100 −a100) (3.16)

Finally we describe the moduli of extensions of splitting type j = 2 as the space of coeffi-
cients

X :=
{(

p010, p011, p100, p101
)
, p021, p201, p111

}
modulo relations that we infer from the above equations:

1. If (p010, p011) 6= (0,0), Equations (3.14) and (3.16) can be solved for any p021, p201, p111.

2. If (p100, p101) 6= (0,0), Equations (3.15) and (3.16) can be solved for any p021, p201, p111.

3. If all first-order coefficients vanish, the three equations imply that all the second-order
coefficients are equal.

Thus the moduli consists of the following sets:

1. The generic set S := {
p010, p011, p100, p101

}/
C×, where (p010, p011) 6= (0,0) and

(p100, p101) 6= (0,0),
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2. the set T1 := {
(0,0, p100, p101), p021

}/
C×, where p021 ∈C and (p100, p101) 6= (0,0),

3. the set T2 := {
(p010, p011,0,0), p201

}/
C×, where p201 ∈C and (p010, p011) 6= (0,0),

4. the set
{
(0,0,0,0), p021, p201, p111

}/
C×, where (p021, p201, p111) 6= (0,0,0), and

5. the split bundle (all ptr s = 0).

Conclusion: The moduli of extensions of splitting type j = 2 on W1 is

M(W1;2) = S tT1 tT2 tCP 2 t {∗} ,

where the generic set is

S = {
[p010 : p011 : p100 : p101] ∈CP 3 : (p010, p011) 6= (0,0) and (p100, p101) 6= (0,0)

}
.

Furthermore,

T1 = {
[p100 : p101 : p021] \ [0 : 0 : 1]

}∼=CP 2 \ {∗} and

T2 = {
[p010 : p011 : p201] \ [0 : 0 : 1]

}∼=CP 2 \ {∗} .

The generic set S has dimension 4 ·2−5 = 3, as in the dimension count Proposition 3.20
promised. Also, S is a proper subset of C4, since the bundles with (p100, p101) = (0,0) or
(p010, p011) = (0,0) are not generic, and those form a closed subset. Note that the generalised
extension class for j = 2 is

p̃(z,u, v) = p0,0,−1z−1 +p000 +p001z + (p010 +p011z)u

+ (p100 +p101z)v +p021zu2 +p201zv2 +p111zuv ,

which has γ= 10 coefficients, in accord with Remark 3.3, the first three of which are deforma-
tions along Z into bundles of lower splitting type.

We can express this result compactly as follows: The moduli M(W1; 2) is the space of
orbits in C7 of the action

p010

p011

p100

p101

p021

p111

p201


−→



λ 0 0 0 0 0 0
0 λ 0 0 0 0 0
0 0 λ 0 0 0 0
0 0 0 λ 0 0 0
α1 α2 0 0 λ 0 0
α3 α4 β3 β4 0 λ 0
0 0 β1 β2 0 0 λ





p010

p011

p100

p101

p021

p111

p201


,

where λ ∈C× and αi ,βi ∈C for i = 1, . . . ,4. Note that the group G that acts is not reductive,
and thus the quotient is not amenable to standard GIT techniques. Explicitly, G is given as
the extension 0 → (C×,×) →G → (C,+)8 → 0.

We see directly that the restriction of the action of G to the subspace C4 spanned by
{p010, p011, p100, p101} reduces to C×, which acts faithfully, and this subspace is the largest
subset whose quotient by the G-action is Hausdorff. The set of generic bundles that we
identified above is a Zariski-open subset of this quotient.

The numerical invariants h, h′, w ′, h′′, w ′′ and h1 help distinguish the different types of
bundles, and they are tabulated in Table 3.4. The table gives also the additional numbers ∆0
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p(z,u, v) cpt. of M(W1;2) h h′ w ′ h′′ w ′′ h1 ∆1 ∆0

0 {∗} 1 1 3 1 3 10 0 0
zuv CP 2 1 1 3 1 3 9 1 1
zu2 CP 2 1 1 2 1 3 9 1 1

v T1 1 1 3 1 1 7 3 3
u T2 1 1 1 1 3 7 3 3

u + v S 1 1 1 1 1 7 3 3
u + zv S 1 1 1 1 1 6 4 4

Table 3.4: Numerical invariants of several bundles on W1 of splitting type j = 2.

and ∆1, but recall that they are determined by h1. While those numerical invariants are not
quite sufficient to give M(W1; 2) a Hausdorff decomposition, it does suffice to identify the
generic set S, which is the one where the sum of the h′, w ′,h′′, w ′′ is minimal; or alternatively
where h1 ≤ 7.

Table 3.4 exhibits another phenomenon: The two bundles given by zu2 and zuv are
clearly in the same part of the moduli and related by a change of coordinates, yet the partial
invariants w ′ and w ′′ differ; the “correct” value is given by w(E{u+v=0}) = 3. To make the use
of partial invariants general, we could devise a family version parametrised by [λ : µ] ∈ P1

computing w(E{λu+µv=0}). The number h1 actually provides a finer invariant than needed, as
the generic set consists of those bundles with h1 ≤ 7.

3.6.2 Bundles on W2

The crucial difference between W2 and W1 is that N∗
Z ,W2

∼= OP1 (2)⊕OP1 is not ample. We
see both from the form of the canonical extension class in Proposition 3.1 and from the
dimension count (1.1) that the parameter space for extensions p(z,u, v) = ∑

ptr s zsur v t

is infinite-dimensional, and it is clear that there exist non-algebraic bundles, e.g. on the
subspace Tot

(
0⊕OP1

)
. Nonetheless, we saw in Theorem 3.11 that every bundle on W2 is still

filtrable.
This means that the moduli of all rank-2 bundles with vanishing first Chern class is still a

union of moduli M(W2; j ) of extensions of fixed splitting type j . Even though each M(W2; j )
is now in some sense infinite, we can still attempt to describe it. We start with a few moduli
M(W2; j ) for small j . The case j = 0 is easy:

Proposition 3.25 (Moduli on W2 for j = 0). Let E be a bundle on Λ2 of splitting type j = 0.
Then E ∼=O⊕2, i.e. E is trivial.

Proof. This follows immediately from Proposition 3.1: On W2 for j = 0 we can always write
the extension as p = 0, so every rank-2 bundle of this splitting type is trivial.

For j = 1, Proposition 3.20 shows that there is only one single generic bundle. The full
space M(W2;1) can be described as follows. Substituting j = 1 into Proposition 3.1, we see
that the polynomial p must be of the form p(z,u, v) =∑∞

t=1 pt00v t .

Proposition 3.26 (Moduli on W2 for j = 1). Let Ep , Eq be two bundles on W2 of splitting type
j = 1 determined by polynomials p, q, respectively. Ep and Eq are isomorphic if and only if
one of the following to conditions hold:

• If p ≡ 0 ≡ 0; or
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• if p1 6= 0 6= q1; or

• if pi = 0 = qi for i ≥ 1 and pi+1 = qi+1 6= 0.

Proof. We determine conditions for Eq and Eq to be isomorphic by rerunning the proof of
Proposition 3.24: We need transformation matrices(

α β

γ δ

)
=

(
z p
0 z−1

)(
A B
C D

)(
z−1 −q

0 z

)
=

(
A+ z−1pC z2B + z(pD −q A)−pqC

z−2C D − z−1qC

)
,

where A,B ,C ,D are holomorphic on U ∩ ˆ̀ and α,β,γ,δ on V ∩ ˆ̀, i.e. formal power series in
(z,u, v) or (z−1, z2u, v), respectively.

First, the condition that the (2,1)-entry be holomorphic in (z−1, z2u, v) implies

C =
∞∑

t=0

∞∑
r=0

2r+2∑
s=0

ctr s zsur v t .

Second, we obtain another set of equations like those on page 30, which we omit here to
avoid cluttering the presentation.

Finally, the (1,2)-entry
z2B + z(pD −q A)−pqC

has to be made holomorphic in (z−1, z2u, v). Since z2B can be chosen to cancel higher
terms, we only need to consider those terms zsur v t with s > 2r and s < 2 in the expression
z(pD −q A)−pqC . This leaves only the terms zv t with t ≥ 1. Moreover, by Proposition 3.5,
E ∼= E ′ implies that we can scale q such that p|`1 = q|`1 . Thus in fact we only need to consider
t ≥ 2.

z
(

p1v +p2v2 +p3v3 +·· ·)(1+u(. . .)+ v(d100 +d101z +d102z2 +·· · ))
−(

p1v +q2v2 +q3v3 +·· ·)(1+u(. . .)+ v(a100 +a101z +a102z2 +·· · ))
−(

p1v +p2v2 +p3v3 +·· ·)(p1v +q2v2 +q3v3 +·· ·) ∞∑
t=0

∞∑
r=0

2r+2∑
s=0

ctr s zsur v t

We obtain an infinite series of equations. The first few are:

For v2z: p1(d100 −a100)+ (p2 −q2)−p2
1c001 = 0 .

For v3z: p1(d200 −a200)+ (p2d100 −q2a100)+ (p3 −q3)−p2
1c101 − (p1q2 +p2q1)c001 = 0 .

...
...

From this we obtain the following infinite list of families of extensions:

• The split bundle, p = 0.

• One “generic” bundle p = v , isomorphic to all p = p1v +∑
t≥2 p2v2 for p1 6= 0.

• A family p = p2v2 with p2 ∈C×, each member being isomorphic to p = p2v2+∑
t≥3 pt v t .

• A family p = p3v3 with p3 ∈C×, each member being isomorphic to p = p3v3+∑
t≥4 pt v t .

• . . .
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3.6.3 Bundles on W3

On W3 := Tot
(
OP1 (−3)⊕OP1 (1)

)
the conormal sheaf N∗

Z ,W3
is not ample, but unlike on W2 it is

not even possible to express every vector bundle as a filtration. In particular, there are rank-2
bundles that are not extensions of line bundles, and the transition functions need not be
algebraic (e.g. on the subset Tot

(
0⊕OP1 (1)

)
).

Note however that for purely dimensional reasons,

h2(Z ; End F ⊗Sn(N∗
X ,W ) = 0

for every vector bundle (in fact, coherent sheaf) F on Z , and that it is thus possible to extend
F to a bundle E on Ẑ such that E |Z = F ; however, just like on W2 there are now infinitely
many non-zero terms in the sum in Equation (1.1), i.e. infinitely many directions in which to
extend.

If we only consider rank-2 bundles that are extensions of the form (2.1), we still know
from Proposition 3.5 that the space of extensions modulo isomorphisms has a generic set of
dimension 4 j −5.

When j = 0 we have p|Z (1) ≡ 0 by Proposition 3.1. However, there are many non-equivalent
bundles on W2 even for j = 0. For j = 1, we have a one-dimensional family of generic
extensions given by p100v +p1,0,−1z−1v (modulo projectivisation).

Example. The bundle E on W3 given by the transition matrix

T =
(

1+ v z−1v
z−1v 1

)
is not isomorphic to an extension of line bundles, and E |Z is trivial.

3.6.4 Structure on the moduli

There is a priori no inherent structure on our moduli of extensions of line bundles modulo
isomorphisms. We define ad hoc a topology on M( j ) by defining

M( j ) :=
({

coefficients ptr s
}⊂Cγ+)/

isomorphisms

and endowing M( j ) with the quotient topology. This is still not Hausdorff, since for instance
the split bundle O (− j )⊕O ( j ) is “near” every bundle in this topology. Here

γ+ =
∞∑

n=1
h1(Z ; End F ⊗Sn(N∗

Z ,Wi
)
)≤∞

is the number of coefficients in p according to Proposition 3.1.

In [BGK, Section 4] it was shown that in the analogous situation of bundles on the
surfaces Tot

(
OP1 (−k)

)
there exists numerical invariants, namely the width and height which

we defined in (2.5) and (2.6), which decompose M( j ) into Hausdorff components.

We remarked that in our three-dimensional cases, the analogue of the width always
vanishes, and the height is finite only on W1.

Generalisations. After having studied numerous examples in detail, we can make a few
generalising remarks. If Z ∼=P1 is a line inside any complex space W and N∗

Z ,W is ample, then
as discussed in § 2.2, bundles on an analytic neighbourhood N (Z ) are determined on a finite
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infinitesimal neighbourhood Z (M), and the situation is modelled on

Wk := Tot
(
NZ ,W

)= Tot
(⊕

i
OP1 (−ki )

)
,

where ki > 0 for all i . Bundles on Wk are filtered and algebraic by [BGK09, Theorem 3.2]. A
rank-2 bundle E on Wk still splits as OP1 (− j )⊕OP1 ( j ) on Z , and the dimension of the generic
set of the moduli space M( j ) of extensions of splitting type j modulo bundle isomorphisms
can be calculated as the γ1-term in Equation (1.1). Each surface Di := Tot

(
OP1 (−ki )

)
in Wk

is now of the form Zki as studied in [BGK], and a bundle E is generic if it is generic on
each Di . Expressed conversely, if a bundle E given by the extension class p, which only
has terms of order 1 in the fibre directions, is not generic, then its restriction to some Di

will be the split bundle, which can be identified by its numerical invariants according to
[BGK]. Among all bundles which have only terms of first order in the fibre directions in their
extension class, the generic ones are precisely those for which the sum of all partial invariants∑

i
(
h(E |Di )+w(E |Di )

)
is minimal.

Theorem 3.27. There exists a two-parameter family of embeddings Φs,t : M( j ) ,→M( j +1),
(s, t) ∈ P1 ×P1, such that

⋃
s,t Φs,t

(
M( j )

) = M( j + 1)− S( j + 1), where S( j + 1) is the set of
bundles of splitting type j +1 that do not split on the second infinitesimal neighbourhood.

Proof. Suppose E is a bundle on W1 of splitting type j given by the polynomial p(z,u, v). For
[a1 : b1], [a2,b2] ∈ (P1)2, there is a map

Φ[a1:b1],[a2,b2] : M( j ) → M( j +1)

which is the composite of two elementary transformations over the divisors Di = {ai u +bi v},
i = 1,2 followed by a twist by O (−1):

Φ[a1:b1],[a2,b2](E ) = (ElmD2 ◦ElmD1 )(E )⊗O (−1)

If the bundle E is of splitting type j and given by the polynomial p, then E ′ :=Φ[a1:b1],[a2,b2](E )
is given by z(a1u+b1v)(a2u+b2v)p. Furthermore, E ′|Z ∼=OP1 (− j −1)⊕OP1 ( j +1), so E ′ is of
splitting type j +1, and E ′ fits into the exact sequence

0 −→O (− j −1) −→ E ′ −→O ( j +1) −→ 0 .

By construction, E ′|Z (2)
∼=OZ (2) (− j −1)⊕OZ (2) ( j +1), that is, bundles in the image split on the

second infinitesimal neighbourhood of Z .
It can be seen by direct computation that every bundle of splitting type j +1 which splits

on Z (2) is in the image of Φ[a1:b1],[a2,b2]. For this, one observes that every polynomial in the
canonical form from Proposition 3.1 which is of total (u, v)-degree ≥ 3 and of splitting type
j +1 can be written as z(a1u+b1v)(a2u+b2v)q for some other polynomial q of splitting type
j .
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