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Abstract

In this thesis we study the moduli of holomorphic vector bundles over a non-compact com-
plex space X, which will mainly be of dimension 2 or 3 and which contains a distinguished
line ¢ ¢ X. We will consider the situation in which X is the total space of a holomorphic
vector bundle on CP! and 7 is the zero section.

While the treatment of the problem in this full generality requires the study of complex
analytic spaces, it soon turns out that a large part of it reduces to algebraic geometry. In
particular, we prove that in certain cases holomorphic vector bundles on X are algebraic.

A key ingredient in the description of the moduli are numerical invariants that we asso-
ciate to each holomorphic vector bundle. Moreover, these invariants provide a local version
of the second Chern class. We obtain sharp bounds and existence results for these numbers.
Furthermore, we find a new stability condition which is expressed in terms of these numbers
and show that the space of stable bundles forms a smooth, quasi-projective variety.
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Chapter 1

Preliminaries

1.1 Introduction

The aim of this thesis is to add to the understanding of the moduli of holomorphic vector
bundles on non-compact complex spaces. The cases we consider are complex surfaces and
threefolds which are the total spaces of bundles over CP'. Both these cases are not only
interesting in geometry, but also in mathematical physics. Indeed, there is an extensive
theory relating holomorphic vector bundles on smooth complex surfaces to instantons on
the underlying real manifold, provided by Kobayashi-Hitchin correspondence. The three-
dimensional case, on the other hand, is interesting in string theory, in which holomorphic
bundles, or more generally coherent sheaves, describe string boundary conditions (so-called
D-branes). A description of the moduli of such bundles is therefore important for any type of
problem that requires integration over “all branes”, which is a staple of mathematical physics.

Several results of this thesis have been published in joint work with my supervisor E.
Gasparim and with physicist P Majumdar and E. Ballico. Some results will only be cited,
while the proofs of others are repeated here. By and large, lots of the results on complex
surfaces (Chapter 2) have been published, while the material in Chapter 3 on threefolds is
new.

The Kobayashi-Hitchin correspondence between irreducible SU (2)-instantons and stable
holomorphic vector bundles of rank 2 was proved for compact Kahler surfaces by Uhlenbeck
and Yau, for C? by Donaldson and for C2, the blow-up of the plane in the origin, by King.
The result was extended to the non-compact spaces Zy described below in [GKMO08], where
7y =C2.

When passing from complex projective geometry to non-compact spaces, one imme-
diately faces the complication that there exist holomorphic objects that are not algebraic.
We will briefly review the basic definitions of the categories of complex schemes and ana-
lytic spaces, before demonstrating that the class of non-compact spaces of the form Z :=
Tot(Op:1 (—k)) for k > 0 satisfies GAGA-type properties, as does the space W; := Tot(Op1 (1) &
Op1(-1)). Armed with this knowledge, we are able to present an explicit description of holo-
morphic vector bundles on Z; and W; and to attempt a first guess at how to parametrise
their moduli.

The main part of this thesis consists of the construction of several holomorphic numerical
invariants of vector bundles. These techniques are applicable both in the case of surfaces
and of threefolds, and indeed they generalise to spaces of higher dimensions and bundles
of higher rank. The crucial condition on the base space is that it contains a contractible
line ¢ =P!. If Z denotes any such space in question, we write 7: Z — X for the contraction
of ¢ (so for example we have 7: Z; = C%2 — C?). If E denotes a holomorphic vector bundle
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on Z, then two of the numerical invariants of E are obtained from the cohomology of the
direct image Rm. E. We construct further invariants (which do not necessarily require the
space to contain a contractible line, merely a compact 1-cycle) from the cohomology of the
endomorphism sheaf &ndE.

The computation of these numbers proceeds by iteration over infinitesimal neighbour-
hoods. We will discuss the distinction between the algebraic and the analytic category and
conclude that we obtain the same results by performing the computations in either category.
Finally, I developed a set of computer algorithms for the computation of the invariants, using
the great open-source computer algebra system Macaulay 2 by Grayson and Stillman. While
a detailed description of the implementation is left to a separate publication, the results of
these automated computations have been used in several results.

Acknowledgements. Iam greatly indebted to Elizabeth Gasparim for confronting me with
fascinating and challenging questions and for guidance in matters mathematical and meta-
mathematical. I am also most grateful to my collaborators Pushan Majumdar and Edoardo
Ballico for an exciting entry into mathematical research, to Mike Stillman and Dan Grayson
for creating and maintaining an active community around Macaulay 2, and to Irena Swanson
for interesting discussion, inspiration with the computer algorithms and editorial work.
Fruitful discussions were also had with Alexey Bondal, Alistair Craw, Gavin Brown, Tom
Bridgeland, Jean-Paul Brasselet, Sheldon Katz, Jonathan Block, Patrick Clarke and Tony
Pantev, and with Shiying Dong and Artan Sheshami, while Toby Bailey provided vital coffee
and Andrew Ranicki vital IT resources.

I should also like to thank the Engineering and Physical Sciences Research Council
and the London Mathematical Society for their support and the Centre International de
Rencontres Mathématiques, the University of Pennsylvania and the Indian Association for
the Cultivation of Science for their hospitality, all of which contributed significantly to this
work.

1.2 Analytic and algebraic geometry

The objects of our study lie at the confluence of different fields of mathematics, namely
topology, differential geometry, analysis and algebra. To study the geometry of a space X, we
will need to know its topology and its differential structure, so the notion of smooth manifolds
and vector bundles enters, but this is not quite enough. To fully express the subtleties that
arise, we need the notion of coherent sheaves over schemes and analytic spaces, or even over
formal schemes, formal spaces and stacks.

To begin, we will introduce two related notions of analytic spaces and schemes. To this
end, we first define several basic algebraic notions.

1.2.1 Basic definitions

We assume familiarity with basic notions of group and ring theory. In particular, every Abelian
group is a Z-module and every ring with unit is a Z-algebra, so it suffices to study modules
and algebras.

Algebra. We will write C{xy,...,x,} for the C-algebra of power series in n variables that
converge on a neighbourhood of 0 € C. If k is any field (or indeed commutative ring with
unit), we will write k[xi,...,x,] for the k-algebra of polynomials in n variables. Clearly
Clx1,...,xn] € Clxy,..., x5}
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We will also reserve the notation R, S, ... for commutative rings with unit. We denote
by 900 the (Abelian) category of R-modules and by mody the full subcategory of finitely
generated R-modules. If of is an Abelian category, we write C(<f) for the (Abelian) category
of cochain complexes, K(<#) for the (Abelian) category of cochain complexes up to cochain
homotopy, and D(«¢) for the derived category of 7. We also write K" («f), K~ (<) and K b (o)
for the full subcategories of bounded (respectively above, below and both) complexes, and
for C(«#) and D(«/) similarly. Note that K(«/) and D(«/) are naturally triangulated. We write
Crnooy, MMo0dR) for the category of cochain complexes in 9100z whose cohomologies lie in
moOp, and similarly for K and D.

Sheaves. If X is any topological space, there is a category Open y whose objects are the open
sets of X and whose morphisms are the inclusions. A (set-valued) presheaf on X is a functor
F € [Op en;p, Get], where Get is the category of sets, €°P denotes the opposite category of a
category € and [€,2] denotes the category of functors from a category € to a category &,
whose morphisms are natural transformations. A presheaf of Abelian groups takes values in
the concrete category of Abelian groups, and a presheaf of rings, modules, algebras etc. takes
values in the respective concrete subcategories. A presheaf is a sheaf if the gluing axiom
holds: For any two open subsets U, V € X, if there exist s; € % (U) and s, € & (V) such that
slunv = tlvau, then there exists t € & (U U V) such that t|y = s; and t|y = s. For every point
x € X, the stalk at x of a presheaf & is

Fy:=limZF (),
Usx

i.e. elements of &, are represented by pairs (V, sy) where V is open and contains x, sy € & (V),
and (V’, sy) is equivalent to (V, sy) ifand only if x € VN V' and sy |yay = syrlyiay.

1.2.2 Geometric spaces

Definition 1.1. A ringed space s a pair (X, /), where X topological space and </ is a sheaf
of commutative rings with unit on X. A locally ringed space is a ringed space (X, </) where
each stalk <7, is a local ring, i.e. a ring with a unique maximal ideal, which we denote by m.
We will also write of =: Ox and call G the structure sheaf of X.

Definition 1.2. If (X, <) is a ringed space, we say that a sheaf & on X is an o -module if each
Z (U) is an &/ (U)-module and the induced maps are module homomorphisms. We call an
&/ -module & locally free if 7 (U) is a free «/ (U)-module for all open sets U < X; equivalently
if all stalks %, are free «,.-modules.

Analytic spaces. Note that the algebra C{x;,...,x,} is a local algebra, i.e. it has a maximal
ideal (namely the ideal of power series without constant term). We call an algebra <« a C-
analytic algebra if it is isomorphic to the quotient of C{xy, ..., x;} by some finitely generated
ideal for some 7. (A similar notion exists for real-analytic algebras.)

Definition 1.3. A C-analytic spaceis alocally ringed space (X,0x) where each stalk O  is a
C-analytic algebra. The structure sheaf Gy is the sheaf of germs of holomorphic functions,
whose stalks consist of power series that converge on some neighbourhood.

Remark 1.4. Every analytic space looks locally like {f; =--- = f, =0} < C", where the f; are

holomorphic functions on C”, and the corresponding analytic algebra is just C{x, ..., X} / (f1,-.-.-

In fact, the anti-equivalence principle says precisely that germs of analytic spaces correspond
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precisely to analytic algebras. We call the induced topology on X the Euclidean or analytic
topology.

Schemes. (See standard textbooks like [Har77].) To every commutative ring with unit R we
can associate a locally ringed space (Spec(R) = X, «/) such that </ (X) = R; this space Spec(R)
is called an affine scheme. Its points are the prime ideals of R, and its closed points are the
maximal ideals. The topology coming from the Spec-construction is the Zariski topology, in
which closed sets are precisely the zero locus of polynomials.

A general scheme can be covered by open sets that are affine schemes. If R is the quotient
of C[x,...,x,] by a finitely generated ideal, we say that Spec(R) is an affine scheme over C
(and similarly for general schemes). Note that such a scheme over C is a locally ringed space
whose structure sheaf is the sheaf of regular functions, whose stalks are germs of polynomial
functions. Equivalently, such a scheme is locally the zero locus {f; = --- = f, = 0} = C" of
polynomials.

Analytification. Since a polynomial ring over R or C is contained in the ring of convergent
power series and the latter is a module over the former, every real or complex scheme defines
uniquely a real- or complex-analytic space, which we may call the analytification of the
scheme.

Formal spaces and schemes. If (X,0x) is a complex space or scheme and .# c Oy a sheaf
of ideals defining a subspace A ¢ X, then the locally ringed space

A = (A,0x /I 4)

is called the m™ infinitesimal neighbourhood of A in X; it is itself respectively a complex
space or scheme. Moreover, for varying m these neighbourhoods form an inverse system
v AU A=  A@) = A We call the inverse limit of this system the formal
completion of X along A, written A. Note that when .# = 0, then A= X and X = X. We will
colloquially call A the formal neighbourhood of A.
For example, the formal completion of the origin in affine n-space is given by the limit

liI_nC[XI,...,Xn]/(XI,...,Xn)m+1 = C[[xlr”-)xn]] )
m

given by the ring of formal power series in the n variables. In analogy with the Spec-
construction C”* = SpecC[x;,...,X,], we also speak of a formal spectrum and write 0 =
SpfCl[xy, ..., x,]]. Finally, a formal complex space or a formal scheme is a space that is covered
by open sets that are formal spectra. In other words, formal spaces or schemes look locally
like the formal completion of a space along a subspace. By virtue of our earlier remark, every
complex space is also a formal complex space, and likewise for schemes.

Note as an aside that the notion of formal completion is always available in Algebraic
Geometry, over any ground field, while the notion of analyticity and convergence exist mainly
over R or C.

1.3 Moduli and deformation theory

1.3.1 Informal introduction

The moduli problem is, in a very general sense, the question whether there exists an object 9,
the moduli, that parametrises all objects of a certain type — for example, all vector bundles
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over a scheme. In that case, each point of 91 is one such object. This situation is particularly
interesting if 90 itself has geometric structure: In good cases, when parametrising algebraic
objects over a scheme, 9T might be a scheme itself, or a more general object like an algebraic
space or a stack, the notions of which were invented precisely to describe the solutions of
moduli problems.

Suppose now that 9t parametrises vector bundles over a fixed base space X up to isomor-
phisms, so that we may write [E] € 971 for the point that parametrises all bundles isomorphic
to E — X. If M is smooth at [E], the tangent space T{g 9 measures infinitesimal first-order
deformations of E. Intersection theory tells us what Tjg 97 is (if 90T has a perfect obstruction
theory), and in the case of vector bundles over a projective scheme X it willbe H!(X; &ndE).
The upshot is that the dimension of this cohomology group is the dimension of the compo-
nent of the moduli containing [E].

Let us be more specific. By a deformation of some object Y we mean another, larger object
% along with a morphism n: % — S to some parametrising pointed object (S,0 € S), such
that % := 771(0) 2 Y. We call % the central fibre of the family 7. When S = SpecCl[x]/(x?)
is the double point, we call 7 a first-order deformation. Similarly, we have higher-order
deformations over SpecC[x]/(x") and formal deformations over SpecC|[x]] - but note that a
formal deformation does not imply that an actual deformation exists, which is essentially
asking for a formal power series to converge.

For example, in the category of schemes or of analytic spaces, a very popular deformation
is a flat smoothing, which means that 7 is a flat morphism (which is a homological condition)
and that the non-central fibres &, s # 0 are smooth. If X is not smooth and a flat smoothing
exists, then one can replace the study of the complicated object %y by that of a smooth object
%, as long as one is concerned with properties that are invariant under flat deformations
(like the Hilbert polynomial).

1.4 Some results from deformation theory

Remark 1.5. If X c W is a subspace such that the conormal sheaf N )*( w is ample, the defor-

mation space of a bundle on X is finite-dimensional:
Fix an integer m = 0, a vector bundle E,, on X and set Ey := E,;|x. If

h*(X;éndEy® S™(Ny 1)) =0,

then there exists a vector bundle E,,,+; on X*V such that E, ;41 | xum = Ep, ([Pet81, Satz 1]).
Now let F be a vector bundle over X such that h?(X;&ndF ® S'(N}; ,,,)) =0forall £ > 0. If
N}, is ample, then k' (X;&ndF ® S'(N} ,,,)) = 0 for £ 0, and hence

Y=Y v:=Y h'(X;6ndF® S (N ) < +oo. (1.1)

t=0 =0

Then there exists a vector bundle G on X such that G|x = F, and for a fixed such G the
deformation space of G is isomorphic to C¥ ([Pet82, Satz 2], and first Bemerkung at p. 115, and
see also [dJP00, Theorem 10.3.16]). There is a vector bundle A on an analytic neighbourhood
U of X in W such that Al = G, and hence A|x = F ([Pet82, Satz 3]).



Chapter 2

Surfaces

2.1 Introduction

In this chapter we focus on complex surfaces that contain an embedded line with negative
self-intersection number. We have in mind the situation where the line ¢ = P! inside the
surface Z has the conormal sheaf JV;; 7 = Op1 (—k). Since we are only interested in the local
model, we will in fact assume that our space is the total space of a line bundle over P! and

define the spaces Zj := Tot(Op: (—k)).

2.2 Digression: Application to mathematical physics

This section illustrates an application of our study of moduli to mathematical physics and
the theory of instantons, but it is not necessary for the remainder of this thesis.

The complex dimension 2 is special in the sense that a complex 2-manifold is also a real
4-manifold, and the geometry of real 4-manifolds is famously very special. In the present
case, we employ the Kobayashi-Hitchin correspondence for a compact Kdhler manifold X
of complex dimension 2. A unitary, anti-self-dual connection V on a smooth SU(2)-bundle
E — X (i.e. an instanton) decomposes as V = 0 +d with respect to the complex structure on X,
such that d induces a holomorphic structure on E. The Kobayashi-Hitchin correspondence
states that the map V — 4 is invertible and provides a one-to-one correspondence between
SU(2)-instantons and holomorphic bundles with vanishing first Chern class on X, and the
instanton charge corresponds to ¢, (E). The correspondence has been proved in the cases
when X is a projective surface by Donaldson and when X is compact Kéhler by Uhlenbeck
and Yau. In the non-compact case Donaldson proved the correspondence for X = C? = Z,
and King for the case where X is the blow-up of C? at the origin, which we denote by Z;.
In the non-compact cases, an instanton on X has to be understood as an instanton on
the projective closure of X, which is CP? in the case of X = C? and the first Hirzebruch
surface 2, := P(@pl (-1)®Om ), with the additional condition that the bundle be trivial on a
neighbourhood of the line at infinity. Of course in the non-compact case the second Chern
class and the instanton charge vanish.

With this in mind it turns out that a holomorphic rank-2 bundle E on Z; corresponds
to an instanton if it extends to a bundle on the Hirzebruch surface X := P(@Pl (ke @[pl)
such that the extension is trivial on the complement of ¢, and we call E a framed instanton
if a trivialisation of E on Z; \ ¢ has been fixed. We will find certain numerical invariants
for the description of the local moduli of bundles on Z, from which we can build a local
holomorphic Euler characteristic, and we have proved that a version of the Kobayashi-Hitchin
correspondence extends to the spaces Z; and relates SU(2)-instantons with local charge n
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on Zj to holomorphic rank-2 bundles with vanishing first Chern class and local holomorphic
Euler characteristic n ((GKMO08, Prop]). Here the local charge of an instanton E is thought
of as the second Chern class of the trivial extension of E to Z. It is “local” because the only
contribution to this Chern class comes from a neighbourhood of ¢, thanks to the following
observation.

Under certain conditions that we make precise below, bundles on our model spaces Z
can be “glued into” instantons on a larger (compact) surface X containing a line Y c X such
that A, = Op1 (—k) by a process that was called “holomorphic surgery” in [GKMO08]. This
process works as follows. If E is a given instanton on X and we replace E by another bundle
E' with ¢;(E") = 0 such that E|x\y = E'|x\y, we have performed “holomorphic surgery”. If in
addition ¢; (E’) < c2(E), we say that E has decayed to E'. The charge difference ¢, (E) — ¢ (E')
should be visible entirely locally near Y, and indeed it is.

If we write N(Y) for a small, analytic neighbourhood of Y, then rank-2 bundles on N(Y)
can be identified with rank-2 bundles on Z; (see Remark 2.3, it is not true that any tubular
neighbourhood of Y is biholomorphic to Z;), and on Z; an instanton can indeed decay to
the trivial bundle. Plugging this back into X, we say that E should be allowed to decay locally.
If E' denotes the outcome of total local decay near Y, then ¢, (E) — ¢z (E’) is precisely the local
charge of E near Y. It is the physical assumption that an instanton should locally be able to
decay entirely that leads us to assume that E is trivial on N(Y) \ Y. In this case, holomorphic
surgery works simply by fixing a framing of E on N(Y)\ Y and identifying it with a framing
on N(¢)\ ¢ of the desired local instanton on Zj..

To summarise, the study of the local situation on Z. allows us to describe instanton decay
on any compact surface that contains negative lines via the contribution of local instanton
charges near those lines, which we model with the spaces Z.

2.3 Vector bundles on Z;

The physics of the previous section is a In order to justify several of the constructions from
the previous section, we must understand what holomorphic vector bundles on Z; look like.
Suppose then that E — Z; is a holomorphic bundle. By the Grothendieck splitting principle,
Ely 2 ®;0p (a;), and ¢, (E) = ); a;. It turns out that in fact E is algebraically filtered, that is,
made up from iterated algebraic extensions of bundles.

Theorem 2.1 ([Gas97]). A holomorphic vector bundle E — Z. of rank r is algebraically filtered,
i.e. there exists an increasing filtration E, c --- ¢ E, = E such that E, is a line bundle and
E,-/E,-_l is a line bundle for 2 < i < r, and moreover all bundles E; are algebraic.

The spaces Zj are special model spaces, and in fact this result works in much greater
generality.

Theorem 2.2 (Ballico, Gasparim, Képpe). Let W be a connected, complex manifold and ¢ c W
a reduced, connected curve that is locally a complete intersection. If the conormal bundle
N, is ample, then every vector bundle on ¢ is filtrable. If in addition ¢ is smooth, then every

holomorphic bundle on ?is algebraic.

Remark 2.3. In fact, every vector bundle on 7 is determined already on a finite infinitesimal
neighbourhood #U™. This is the reason that for the purpose of instanton decay we were
allowed to identify bundles on N(Y) and Z earlier.

Now we specialise to the case of rank-2 bundles. First note that Pic Z = H? Z; 2)=Z
and thus line bundles on Z; are uniquely determined by their first Chern class, and they are
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simply the pull-back of Gp: (r) from P!, Nowif E — Zy. is a bundle of rank 2 with ¢; (E) =0,
then by Grothendieck’s splitting principle again, E|y = Op1 (—j) ® Op1 (j), and we call the
integer j the splitting type of E. Now by Theorem 2.1, E fits into a short exact sequence

0—O(-j)— E—06(j) —0. 2.1)

We will also fix once and for all local coordinate charts on Z. Since Zy is the total space of a
vector bundle over the Riemann sphere P!, we only need two charts: Let U = C? = {z, u} and
V =C?%={z1, zku}. The bundle E is thus uniquely determined by one transition function on
the overlap U n V, which can be expressed in the form

(7 pzu
T—(O Z_j), 2.2)

where p is a polynomial in z, z7! and .

2.4 Numerical invariants

The study of bundles on Z; becomes more interesting when one considers the contraction
n: Z; — X of the zero section ¢. To motivate this, let us return for a moment to the case
of instantons on Z; and X;. Here the contraction maps Z; to C?, and X; to P2. Since the
target is smooth, the direct image sheaf 7. E of an instanton E is a sum of a locally free sheaf
and torsion, so its double dual (. E)V" is locally free. On the compact spaces we can thus
consider the difference ¢, (E) — ¢2((+ E)V"), which is nothing but the local charge of E that
we met earlier. We compute this quantity directly by an application of Riemann-Roch and
find

c2(E) = c2(m E)VY) = h°(X; (o E)VY /7 E) + h°(X; R' m . E) . (2.3)

The notion of a Chern class of a holomorphic bundle is well-defined on smooth manifolds,
but on singular spaces there exist several inequivalent notions of Chern classes. However,
the right-hand side of Equation 2.3 is independent of any notion of Chern class. In fact, it
is a special case of what Blache [Bla96] defines as the local holomorphic Euler characteristic
1'°° of a reflexive sheaf near an isolated quotient singularity: Let o: (X, A) — (X', x) be a

resolution of an isolated quotient singularity and & a reflexive sheaf on X. Then
n_l . .
1(F,4,0):= (X (0. ) 0. F)+ Y ()W (X; R0 F) . (2.4)
i=1

For the case when X' is an orbifold, Blache [Bla96] shows that,

1(X7)=x(X,0.9")+ Y 1°(F.07'),0),
xeSing X'

so the local holomorphic Euler characteristic measures precisely the amount of total Eu-
ler characteristic that is lost by contracting the orbifold resolution, or in other words the
contribution from a neighbourhood of the exceptional set A.

Our spaces Z; have cohomological dimension 1, so all higher derived images R’ E vanish
for i > 1. For the smooth case Z; we have thus

c¢(¢,E) = x(¢,E),

and from here we define the local charge of E near ¢ to be (¢, E). We name the two con-
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stituent summands the width wy(E) and the height hi(E) of the bundle E,
Definition 2.4.

1°¢(¢,E, ) = h°(Xy; (1. B)VY /. E) + h°(Xy; R'7.E) = wy.(E) + hy(E) ,
ie.

wi(E) = h°(X; (r.E)YY /n.E) and (2.5)
hi(E) := h°(Xy; R'7.E). (2.6)

Remark 2.5. The width wy(E) measures how far the direct image sheaf . E is from being a
split extension; the height h;(E) measures how close E is to being the split bundle (which is
the unique bundle with maximal wy (E) + h(E) for a fixed j).

2.5 Bounds on the numerical invariants

The following results were proved in [BGK].

Theorem 2.6. Let E be a rank-2 bundle over Z. of splitting type j. Then the following bounds
are sharp: For j >0 and with n, = L%J,

O0<swi(E)<(j+Dny—kna(np+1)/2,and w1 (E)=1.

Furthermore, for all0 < j < k, wy(E) = 0 for all bundles E (and necessarily k > 1).

Proposition 2.7. Let E(j, p) be the bundle of splitting type j whose extension class is given by
p, and let E(j) := O (—j) ® O(j) denote the split bundle. If ulp(z, u) and p 0, then

hi(E()) = hi(E(, p)) -

Corollary 2.8. Let E be a rank-2 bundle over Z. of splitting type j with j >0 and let j = nk+b
as above. The following are sharp bounds for the local holomorphic Euler characteristic of E:

n’k+2nb+b-1 ifk=2andl1<b<k,

i—1<y(,E)<
/ X {nzk ifk=2andb=0,

and
jsxW,BE)<j*fork=1.

2.6 Moduli

We would like to know the structure on the space of rank-2 bundles on Z;. We already know
from Theorem 2.1 that all such bundles are extensions of the form (2.1). For each fixed
splitting type j, the space of such extensions is! Extlzk (@’(j),@(—j)) = H! (Zk; @(—Zj)).

Remark 2.9. Note that the space EXtIZk (0()),0(-))) is finite-dimensional for every j. Hence
holomorphic bundles on Zj. are algebraic. Yet another way to see this is to note that a bundle

IThe isomorphism is, for any locally free @-module £ of finite rank (see [Har77, Props. 6.7 and 6.3]),

Ext}(£,-) = R"Homg (£,-) = R'Homg (0,-® £V) 2 R'T (-0 £V) =t H' (-0 £") .
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E is already determined on a finite infinitesimal neighbourhood ¢, which is a projective
scheme and thus automatically satisfies GAGA.

After choosing coordinates, we can compute the space of extensions explicitly and find
that it can be described as the space of coefficients of the polynomial p that appears in the
transition function T in (2.2) for the bundle E. Precisely, this polynomial may be chosen to
be of the canonical form

lej-2/k|]  j-1

plz,u) = Z Z prs2iu’ . 2.7
r=1  s=kr—j+1

Note that in this form, p is always divisible by u, which means that the restriction of E to ¢
splits as Op:1 (- j) ® Op1 (j). We may also consider the slightly more general form

l@j-2)/k]  j-1

plz,u) = Z Z prszsur ,
r=0  s=kr—j+1

but note that when p is not divisible by u, then the splitting type of E is in fact lower than j.
This slightly more general notion will be useful from the point of view of deformation theory
below. See [Gas97, Theorem 3.3] for a proof of the general form.

The space of extensions does not solve the moduli problem for vector bundles, as different
extensions may define holomorphically equivalent bundles. Isomorphic bundles must have
the same splitting type, so we start by considering the spaces Ext! (@ (j),0(—j))/~, where ~
denotes bundle isomorphism. These spaces will have a very complicated topology, but they
give us an explicit handle. Part of this thesis consists of providing a means to decompose
these spaces into finer components that possess a manifold structure.

From the explicit description of p we see that a bundle E splits on the m™ infinitesimal
neighbourhood ¢ if and only if p is a multiple of z*"!. Generically a bundle will not split
already on the first neighbourhood, and this is the most important case we shall consider.
On the first neighbourhood, we have a result.

Proposition 2.10. If p and p’ are two polynomials determining respectively two bundles E
and E' on Z. of splitting type j, then E|,0 = E'| j0) if and only if p = Ap’ for some A € C\ {0}.

Making the notion of genericity precise amounts to finding a suitable notion of stability
on the moduli of bundles.

Definition 2.11. For each integer j and each k we define
M(Zy; j) := Bxt' (G ()),6(- )/~

to be the space of extensions of O(j) by ©(—j) on Z;. up to bundle isomorphism. If E € Mz _(j)
is such an extension, we call E generic if the width wy (E) and the height /i (E) of E attain the
minimal value.

Remark 2.12. From the previous section we know the precise value of the lower bound. This
bound is always realised on all spaces Zi by the bundle determined by p(z, u) = zu.

Theorem 2.13. For j = k, M(Zy, j) has an open, dense subspace homeomorphic to a complex
projective space P22~k minus a closed subvariety of codimension at least k + 1.

It is possible to embed the moduli 9(Zy, j) into M (Zy, j + k) via two elementary transfor-
mations (which we explain presently) and a twist: Let ®: 9(Z; j) — 9M(Zy; j + k) be defined

10
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by
dE) = Elm@(jJ,k) (Elm@,(j)(E)) ® @(—k‘) .

In coordinates, ® sends the bundle given by (j, p) to (j + k, zku? p).

Theorem 2.14. The map ® is well defined, injective and a homeomorphism onto its image,
which consists of all bundles in M (Zy; j + k) that split on the second infinitesimal neighbour-
hood of ¢.

Open question: How does ® affect the numerical invariants?

2.6.1 Elementary transformations

An important tool in the study of vector bundles and sheaves is the elementary transfor-
mation, which changes a locally free sheaf over a divisor. It works as follows. Let W be an
algebraic variety, D ¢ W a Cartier divisor and £ € Pic(D) a fixed line bundle on D. If &
is any locally free sheaf on W and r: & — £ a surjection that is induced by a surjection
p: &lp — £, then & := Xer(r) is called the elementary transformation of & induced by r,
written Elm « (&). Since the divisor D is Cartier, &’ is locally free. Writing £’ := Zer(p), we
obtain the display of the elementary transformation:

0 0

0 —— £ —— &p P 0
f N
0o—— & — & 1% 0
F r

0 0

Note that the induced surjection ¢: &' — £’ gives the inverse elementary transformation (up
to twisting by D).
In local coordinates. Our spaces Z; have one compact divisor ¢ = P! given by

0 _’@)Zk(_k) _)@Zk - 6[ —0 ’

In our canonical local coordinates, ¢ is given by {u = 0} on the chart U and by {zu = 0} on
the chart V, so the left map is just multiplication by u or zXu on the respective charts. Since
every rank-2 bundle comes with a surjection & — €(j), the restriction to ¢ gives a surjection

r:gﬁ@pl(‘]‘),

and we are in a position to apply an elementary transformation with respect to r to the
bundle &. In coordinates, r maps a local section (a, b) to the residue of b modulo (u) on the
U-chart. The kernel of r (which is &) thus consists of all sections (a, b) for which b vanishes

11
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on /. If & is given by (2.1), then &’ is an extension is an extension
0—0O(-j)— & —0O(j+k) —0,

Thus &’ has transition function )
o
oz
and the inclusion F = (f, f): &' — &is given by f(a, b) = (a, ub) on U and f(A,B) = (A, zFuB)
on V. Since we must have To f = fo T’, we compute

ay ay zla+upb = (a\ =z zja+p’b)_
Tof(b)_T(ub)_( ziub ) and f°T(b)‘f(z-f—kub =

and thus p' = up.
The new bundle &' now comes with a surjection to Op: (j + k), so we can perform another
elementary transformation to arrive at a bundle &” with transition function

j 2
n_|[% u-p
T _(O szk)'

Finally, &” (—k) is a rank-2 bundle with vanishing first Chern class and splitting type j + k,
and we see that the map & — &" (k) is given in coordinates by p(z, u) — zFu p(z,u).

For completeness, we record that the inverse transformation is given by the surjection
t: &' — %' =0Opi (- ). The map t is given on the U-chart by mapping (a, b) to the residue of
amodulo (x), and on the V-chart by mapping (&, b) to the residue of @ modulo (zFu).

zla+p'b
z Tub

)

2.7 Stability via the endomorphism bundle

Classical deformation theory of vector bundles on a (compact) surface X says that the obstruc-
tion to deforming a bundle E — X live in the second cohomology H?(X; &ndE) (see [FK74],
and the moduli space is smooth if this obstruction vanishes. In this case, the tangent space
to the moduli space at E is the space of first-order deformations of E, H! (X; &nd E), modulo
the space of trivial deformations (i.e. deformations into isomorphic bundles) H*(X; &ndE).

In our case we take X = Zi, which is of cohomological dimension one, so the second
cohomology of all coherent sheaves vanishes. Since Zj is not compact, we cannot conclude
that the moduli of vector bundles is a smooth space, and we already saw that this is not the
case even for SL(2)-bundles. However, the bundle (or sheaf) &ndE still contains valuable
numerical information, which in fact turns out to be equivalent to the information given
by the width and height for instanton bundles. However, this perspective offers another
interpretation of the invariants, and we may ask for a physical interpretation of the non-
instanton bundles.

To be precise, we define two numbers that we will suggestively call 4! and h°. This
notation is concise at the risk of being confusing, but the context should make clear what is
meant. First off, since Z is the total space of a negative bundle over P!, the cohomology of
&ndE vanishes in degrees = 2 and is finite-dimensional in degree 1. Next we consider the
zeroth cohomology of &nd E. It is infinite-dimensional, since Z; is non-compact and H° is
the space of global sections. However, the difference of dimensions of H° for two different
bundles is finite in a certain sense: Consider the restriction of E to the m™ infinitesimal
neighbourhood of ¢. This space is projective and so V,(E) := H0(€ M. end(E)| [(m)) is finite-
dimensional, although the dimension of this space grows with m. But for each fixed m,

12
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we can compare the dimensions of Vi, (E) and Vi, (Egpli), where we write Egpyi; for the split
bundle of the same splitting type as E, so Espic = O(j) @ O (- j). This difference of dimensions
is independent of m for large values m. Thus we define

h'(E) h'(Zy; &nd(E)), and

WE = ho(é(m); gnd(Esplit”[(m)) - ho(f(m); &End(E)|yom)
where m is taken sufficiently large so that the expression for h°(E) stabilises, which happens
form=4j-2)/k.

While the numbers h°(E) and k' (E) are analytic invariants of E, they are in fact equivalent
to w(E), h(E) on instanton bundles, where j = nk for some n, via the following relations:
wE)+h(E) = y(B) = (B -K"E)-j)/2+j/k
RE) +h'(E) = h'(EndEspin))
This gives
W(E)=n’k-y, h'(E)=kn(n+1)-2n+y(E).

For non-instanton bundles, though, the numbers h°(E) and k! (E) (at least one of them, as
they are not independent) provide additional information on top of w(E), h(E).

2.A Sample computation

We compute explicitly the width and height for a simple, non-trivial example, namely of the
bundle E of splitting type j = 3 on the space Z, = Tot(@]m (—2)) given by p(z, u) = u, so E has
transition matrix
T (z3 u )
“lo z73)°

The space Z, has coordinate charts U = {(z,u)} and V = {(z™!, z2u)}. The contraction of ¢ is

m: Z — Xo =SpecR, where R = C[xo, X1, X2] / (xox2 — xf) )

Width. To compute Q = (n.E)"" /7, E, we first compute sections of E over ¢ ) for all n. This
amounts to computing the space of sections (a, b) of E as formal power series a, b € Cl[z, u]],
subject to the condition that @, b be holomorphic in {z, u} and z73b, z3a+ ub be holomorphic
in {z!, z2u}. This implies that b has the following form:

b(Z,Lt) = b00+b01z+b0222+b03z3+ 42+ .~
+ b10u+~~~+b15zsu+bmzﬁﬂ+/

+ b20u+"'+b27z7u2+W+/

+

All terms z°u” in b with s — 3 > 2r have to vanish. Now we can compute an expression for a.
Since z**3 is never holomorphic in {z™}, z2u} for s = 0, there are no terms on ¢V, We are left

13
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with the following:

a(z,u)

ggo +~
aou+aniu+---

+
+ a20u2 + d21zu2 + a2222u2 + ..
4

Now we consider the expression z3a + ub and pick out every coefficient that must vanish, i.e.
where deg, > 2deg,,. The first few such terms are:

zgu(a10+b03) =0 z4u a1 =0 zsu app =0

z5u2(a22 + b15) =0 z6u2 a3 =0

Finally we can write down generators:

ef) nel) mefl) o) ook

We could have written down many more generators, but over the space X», i.e. over the ring
R={xo=ux = zu,x; = 22u} /(xox2 — x3),

everything else can be expressed in terms of Sy, f1, B2, @. (For example, @’ = xoa + x182.) It
remains to find the relations among the generators, and we arrive at the complete description
of the R-module

M ={po, b1, B2, @) g/ (x1B0— Xof1, X280 — x1B1, X161 — XoP2, X281 —x1B2) -

Application of the Theorem on Formal Functions tells us (in a highly non-trivial fashion)
that Q = coker M =~ M"V. Thus we must compute M" and thence M"". A moment’s thought
shows:

MY =Homg(M,R) ={p",a"},

where
Y ={pi— xi,a—0} and a'={B;—0,a—1}.

M is already free, so MV free as well, given by
MY ={p" =" —1,a" —0},a" = {f" —0,a" — 1}} .
The evaluation map ev: M — M"" acts as follows:
evia) =a’V ev(B;) = x; 8"

Thus the only element in MV, seen as a C-vector space, that is not in the image of ev is the
element 1.8", so coker(ev) = (8")¢, which has dimension one, so w(E) = 1.

Height. The height of E is h(E) := h°(X2; R'n, E). But h° = dim H? is just the dimension of
the stalk (R'7, E)o. Now the dimension is the same for the stalk of the sheaf and the stalk of
the completion of the sheaf, and the latter is computed by the Theorem on Formal Functions:

dim(R'7, E), = dim(R'7, E) = dim(lim H' (¢""; El ) . (2.8)
n

14
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Since the limit stabilises at finite n, the computation is actually easy and amounts to comput-
ing H! (!7, E), which we will do now.

An element of H! is a section over U N V modulo holomorphic sections over U or over V.
We simply write down all such sections. In our case we have exactly two of them:

z1 z72
( 0 ) and ( 0 )
Thus h(E) = 2.

2.B Algorithmic computation of the invariants

[I can supply here a description of the general computational algorithms for the computa-
tion of height, width, h° and h!. This appears on my website http://www.maths.ed.ac.
uk/~s0571100/Instanton/ and on the Macaulay 2 website http://www.math.uiuc.edu/
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Chapter 3

Threefolds

3.1 Introduction

In this chapter we study the local moduli problem on complex threefolds, and in the same
way as in Chapter 2 we assume that our threefold W contains an embedded line P! = ¢ c W,
and the normal bundle of ¢ will play a crucial role. Unlike in the previous chapter, ¢ is not of
middle dimension and there is no analogue of the self-intersection number, but instead we
will consider whether £ moves in W or whether it is rigid, or even infinitesimally rigid. After
establishing these properties, we continue to study the local moduli of bundles on W near ¢
as before.

An important ingredient in the study of the local moduli is extent to which a version
of the GAGA principle holds on the spaces in question. Since the spaces are local P's and
GAGA holds on ¢ = P!, we proceed by studying the infinitesimal neighbourhoods ¢ and
the formal completion ?. We consider three different examples: On the first space, bundles
are filtered and algebraic, on the second they are filtered but not necessarily algebraic, and
on the third there are rank-2 bundles that are not extensions.

In § 3.2 we define the spaces of interest and derive some explicit descriptions. We proceed
to discuss the GAGA property of these spaces in § 3.3 before turning to the moduli problem
proper. Endomorphism bundles are discussed in § 3.4 and numerical invariants in § 3.5 in
preparation for the description of the moduli of bundles in the final § 3.6.

3.2 Local Calabi-Yau threefolds with rational curves

As we are studying spaces with an embedded compact line P!, we reduce to the simplest such
case, which is that of the total space of normal bundle of the line (also called a local P! by
algebraic geometers). The compact 1-cycles of such a space correspond to the holomorphic
sections of the normal bundle, and they are all rationally equivalent to the zero section.

Local P's are particularly amenable as they can be covered by two charts only; thus
we perform explicit calculations. Moreover, all coherent cohomology groups vanish for all
degrees but 0 and 1.

Motivated by the question how the moduli of bundles changes under birational transfor-
mation of the base, we are keeping in mind the question of whether ¢ may be contracted.

16
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3.2.1 Definitions

We restrict our attention to local P! spaces W = N,y that are Calabi-Yau. Since
aW)=caPH+aWyw) and  Nyw =0Opi (@) ®Opi (b),

we have a+ b = —2. When considering the contraction of a line inside a threefold, then
according to [Jim92] only three essential local models may occur:

Wy = Tot(Op:(-1) ® Op1 (-1))
Wy = Tot(Op: (-2) & Op)
Wi := Tot(Op: (-3) @ Opi (1))

In each case we denote by Z the zero-section, so that Z = P!. The spaces have canonical
charts U = C? = {z,u, v} and V, where respectively V = C2 =z zu, zv}, {z7Y, z%u, v} and
{z71,z%u, z71 v}. In each case, the canonical bundle is spanned globally by dz A du A dv, so
we see explicitly that the spaces are Calabi-Yau. Note that the conormal sheaves of W, and W3
are not ample. (More generally, all the spaces W; := Tot(@ﬂm () Op (i - 2)) are Calabi-Yau,
but we will not consider them.)

3.2.2 Canonical forms

Let now E be a bundle on one of the complex spaces W;, i = 1,2, 3 of splitting type j. Assume
for now that E is an extension of line bundles

0—O(-j)—E—0O()—0,
where O(j) is just the pullback of Gp: (j), given by the transition matrix

(2] plzuv)
T_(O z7J )

(It follows from Theorems 3.10 and 3.11 that the transition matrix of every bundle on W) and
W, may be put in this form.) It is necessary that p be of the form p(z,u, v) = up'(z,u, v) +
vp" (z,u, v), for otherwise the bundle E would in fact be of lower splitting type. This is an
important point to which we return in the discussion of deformation spaces.

Proposition 3.1. The extension class p can be reduced to the following form, respectively,

2j-2 2j-2-t j-1
. — s 1t
on Wi: pz,u,v) = > Y. pusduv’,
=€ r=l-€¢ s=r+t—j+1
00 j-1 j-1
. — s r .t
on Ws: p(z,u, V)—Z Z Prrs2u v, and
t=e r=l-e s=2r—j+1
|
. s r .t
on Ws: plz,u,v) =) Y. pusZuvt,

t=e¢ r=l-€¢ s=3r—t—j+1

wheree € {0,1}.

Definition 3.2 (Canonical extension class). We call the form of p from Proposition 3.1 the
canonical form of the extension.
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Proof of Proposition 3.1. Suppose that E is an extension given by the transition matrix

z/ p(z,u,v)
T = ; .
b ")
A priori, p is given by a convergent power series
o0 [e.°] o0
pizu,v)=) > ) pirsziu’ v,

t=€r=1-¢S$=—00

where € € {0,1} accounts for the vanishing of p on the zero section u = v = 0. A bundle
isomorphism casts T into the new form

- zip _(a B zl p(z,u,v)\(A B
N R B

where a, B, v, 6 are holomorphic on V and A, B, C, D are holomorphic on U. In particular,
we consider only C =y =0, whence a A =0D = 1, and we can write

[ P Z pzuv) (e B _ 2 p
o DYlo z7J 0 D 0 z7/)’

p'=aBz/ + Dz ) +aDp. (3.2)

with

We may fix ¢ = D = 1, say, and use  and B to remove terms from the power series of p:

First, any term p;rsz°u” v’ with s > j can be removed from p by setting $ =0 and B =
—purs2*~/u"v?; B is holomorphic on U. Thus we only need terms with s < j — 1. Secondly,
for fixed r and ¢, by setting B=0and = —pmz”j u” v* we remove terms with

r+t—j <s onWp,
2r—j <s onW,,and

3r—t—j =<s onWs.

Finally, we have obtained constraints for s, r and ¢ for the remaining terms in p as follows:

r+t—j+l=ss=sj-1 = r+r<2j-2 on Wi,
2r—j+l=ss=<j-1 = r<j-1 on W;, and
3r—t—j+l=ss<j-1 = 3r—t<2j-2 on Ws .
The result follows immediately. O

Remark 3.3. If instead we also allow terms which are not multiples of u or v, we include
extensions of lower splitting type. These more general functions are obtained by starting
both sums over r and t at zero. We write, for example on Wy,
2j-2 2j-2—t j-1
ﬁ(z)urv): Z Z Z ptrszsurvt,
t=0 r=0

= s=r+t—j+1

which determines an extension of splitting type < j (but is not in canonical form if the
splitting type is strictly less than j).

Corollary 3.4. IfA #0, then p and Ap determine isomorphic bundles.
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Proof. In Equation (3.2),let f=B=0,a=1and D= A. O

On the first infinitesimal neighbourhood ZV, the converse of Corollary 3.4 is true. We
are working on the formal completion Z, so local section of the structure sheaf @ > is a formal
power series in u and v and convergent in z. Peternell’s Existence Theorem (see Remark
1.5) asserts that a bundle on 7 extends to a holomorphic bundle on an actual open (in the
analytic topology) neighbourhood of Z. Thus we are allowed to let the entries of the matrices
in the isomorphism (3.1) be formal power series. It is always possible to choose a nowhere
vanishing formal power series with a finite number of prescribed coefficients, so that we can
always make sure that the coordinate change matrices have nowhere vanishing determinant.

Proposition 3.5 (Bundles on Z\V). On the first infinitesimal neighbourhood Z'V in any of the
three spaces W1, W, or W, the only isomorphism of bundles is scaling. That is, two bundles
E1l 70 and Es| zu) given by transition matrices

zl p zZl g
( 0 z‘j) and ( 0 z_j)
are isomorphic if and only if g = Ap for some A € C*.

Proof. The “if”-part is just Corollary 3.4.

For the “only if”-part, first note that the restriction to the first neighbourhood ZV implies
that p and g only contain powers of u and v of total degree 1. It follows from Proposition 3.1
that p and g only contain certain powers of z°, namely those with

2-j=<s<j-1 on Wy,

inz’u: 3-j<s=j-1
Wa,
inz'v: l—szsj—l} on W, and 3.3)
inz'u: 4-j<s<j-1
. zsu J J } on Ws.
inz’v: —-j=ss<j-1

Next, the two bundles are isomorphic only if there exist matrices holomorphic on the respec-

tive charts such that , )
zZ2 p)\[([A B\ _ (a B\(zd g
0 z7/)\c D) \y ¢&J\lo z7J)°

Here A, B, C, D are power serieson UnN ZW and a, B,y,0onVn 71 and we write, for instance,
A(z,u,v) = ago(2) + a10(2)u + ap) (z) v etc., where the coefficients are power series in z, and
similarly for respectively a(z™}, zu, zv), a(z™!, z2u, v) and a(z™', 23 u, z 1 v).

Comparing the two sides of the equation term by term gives four equations. We will only

go through the case of W here; for the other two just replace zu and zv in the following by

z?u and v for W, or by Z3uand z7 v for Ws.

(a00(2) + aro(2) u+ ag: (2) U)Zj +pcoo(2) = (aoo(z ™) + @10z Hzu+an (z Hzvz (3.4
z (co0(2) + cr0(@)u+ co1(2)v) = (yoo(z ™) +y10(z Dzu+y0(z Hzv)z!  (3.5)

(oo (2) + b1o(2)u+ bo1 (2)v) 2’ + pdoo(2) =

aoo(z g+ (Boo(z™H) + Brolz Hzu+ ﬁm(z_l)zv)z_j (3.6)
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27 (doo(2) + dio(2)u+ do1 (2) V) =

Yoo(z g+ (800(z™) + 810z Nzu+801(z Hzv)z™/ (3.7)

The polynomials p and g are divisible by either u or v, so comparing the terms in (3.4)
and (3.7) that are independent of both © and v gives ag(z) = ago(z™1) and dyo(2) = 6go(z7 1),
whence all four are constants and agy = agg and dog = 0.

Next, equating terms in u or v in (3.6) gives

(bro(@u+ bo1(2)v) 2! + pdoo = agoq + (Bro(z Nz + for (2 Hzv)z .
By the conditions (3.3) on p and g, we must have
bip(2)u+ by1(z)v=0 and ,Bm(z_l)zu+,301(z_l)zv =0

(whence bjp =0 = bg; and 10 = 0= fo1), and so pdyo = @pog.

The proofis finished by showing that agydyo # 0. But the terms independent of both u
and v in (3.6) yield boo(2) 2! = Boo (z~1z~/, whence bgy =0 = Boo. Thus over Z the coordinate
change has determinant aggdyy = @godoo # 0. O

Remark 3.6. Inspection of the proof of Proposition 3.1 shows that the conditions (3.3) and
the equations (3.4)—(3.7) match up precisely, and that the conclusions of Proposition 3.5 are
in fact valid for all spaces W; = Tot(Opi (—i) ® Op1 (i — 2)).

Remark 3.7. Another way of seeing extensions of the form (2.1) is by considering the isomor-
phism!
Ext,, (0()),0(-)) = H'(W; 0(-))®0(j)") = H'(W; 0(-2))). (3.8)

Direct computation shows that this is precisely the space of all coefficients in the generalised
extension form from Remark 3.3, and the space of extensions E that satisfy E|; = Op1(—j) &
Op1 () is thus precisely the subset of Ext! (Op1(j),0p1 (- J)) consisting of extension classes of
the form p(z, u, v) = up'(z,u, v) + vp"(z, u, v). Proposition 3.1 says that all terms in p that lie
outside the given range are coboundaries with respect to this H'.

In fact, computations of H'-groups will be useful once more: The height of a rank-2
bundle E near an exceptional set, as defined by Equation (2.6), can be computed by the
Theorem on Formal Functions (2.8) as follows:

h(E):= h°(W'; R'n.E) = dim H°(W'; R' % .E)
= dim(Rlﬂ*E)O =dim [lir_nHl(Z(”); E) ] .
n
But since E is algebraic in the cases which we consider (namely on W) and on the hypersur-
faces D;), the limit in the right-most term stabilises at finite 7, and it remains to compute H'

formally on Z. To this end, we present a canonical form of 1-cocycles representing elements
of H' (2 ; E):

IThe isomorphism is, for any locally free @-module £ of finite rank (see [Har77, Props. 6.7 and 6.3]),

Ext}(£,-) = R"Homg (£,-) = R'Homg (0,-® £V) 2 R'T (-0 £V) =t H' (-0 £") .
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Proposition 3.8 (Canonical cocycle). Let E be an extension as in Proposition 3.1. A1-cocycle
o € HY(E) has the canonical representative, respectively,

t -1

-2 j-2-
ag
onW: o= > > ZSu"v! ( 0”) ,
t=0 r=0 s=r+i—j+1
j-2
[ele] I.jTJ -1 a:
onW,: o=) ) Zu" v’ ( 0”) , and
t=0 r=0 s=2r—j+1
[ele] |. +é_2J -1 a;
on Ws: o=y ) Yoo Zu! ( 0”) )
t=0 r=0 s=3r—t—j+1

Remark 3.9. Cocycles in H!(D;; E) are obtained from this by setting v = 0.

Proof of 3.8. Apriori, o is given by
a o0
g = =
0)=%

Terms with non-negative powers of z are holomorphic on U, so we can restrict to s < -1 and
stay in the same cohomology class. Now on V,

18

(o0}
a
Z ( ”)zsurvt.
r=0s=—00 btrs

zla+pb )

To = _ i
(ZtZrZs:I—oo 2 u !

Since j = 0, the second entry is holomorphic on V, and To is cohomologous to

zla+pb
TU~( 0 )

Going back to U, we find

T 'To ~ (a+z_jpzf2r Z;:1—00 btrszsuryt) .

0

Since no power of z in p is greater than j — 1, we can relabel the coefficients and write

[e ) o] -1 / N
T_1T0'~( IZOZTZOZS:—OO Aprse U U)

0
Going to V one last time, we find that the terms in
Lo oo -1
2y 3 Y a,Zu vt
t=0r=05=—00
are holomorphic on V and can be discarded if
r+t on Wy,
s+j<<{2r on W5, and
3r—t on Ws.

21



Moduli of bundles on local surfaces and threefolds 22

This constrains the exponents as follows:
C—-j+1=<s<-1,whereC:=r+t, 2r, 3r — t respectively.

So C < j —2, and together with r, £ = 0, the result follows. O

3.3 Algebraicity and filtrability

In Chapter 2 we made use of the fact that bundles on the surfaces Z; were algebraically
filtrable, which is a consequence of the ampleness of the conormal bundle of the compact
line inside the total space. We can apply the exact same reasoning to derive similar results for
the spaces Wj and W, and to see why W3 does not possess these properties.

Theorem 3.10. Every holomorphic vector bundle on Tot(Op: (—1) ® Op1 (—1)) is filtrable and
algebraic.

Proof. This is a direct application of Theorem 2.2. O

Theorem 3.11. Let Z be the zero section of Opi(—2) ® Op1(0). Fix an integerr = 1 and a
holomorphic rank-r vector bundle E on Z. Let a; = --- = a, be the splitting type of E| ;. Then
there exist vector bundles F; on Z,0< i <r, such that F, := E, F, := Lg,, Fo := {0} and F;|z has
rank i and splitting type a, = --- = a;, and such that there are r — 1 exact sequences on Z (for
2<i=<r)

0— Lg — F;— Fi_1 —0, (3.9)

where Ly, = 0(a;).

Proof. The result is obvious if r = 1. Hence we may assume r = 2 and that the result is
true for all vector bundles with rank at most r — 1. By assumption there is an injective map
j: Oz(a,) — E|z on Z such that coker(j) is a rank-(r — 1) vector bundle on Z with splitting
type a; = --- = a,_;. The map j gives a nowhere-zero section s of E(—a,)|z. Let us show that
this section extends over a neighbourhood of Z: There is an exact sequence

0— S'(Nj ) — 0y — o)) —o, (3.10)

where S? (N} Wz) is the tth symmetric power of the conormal sheaf of Z in W,. In this case,
we have Nz w, =G0 z(-2) ® Oz, therefore,

t
S' (N w,) =P 0o22k) .
k=0
After tensoring by the bundle E(-a;), the exact sequence (3.10) becomes

0— E(-a,)®

t
@@z(zk)] — E(-a)®0"Y — E(-a,)®0 —0,
k=0

thus inducing the long cohomology sequence
t
-+ — H°(Z;E(-a,)#0™") — H°(Z;E(-a,)80) — 99 HY(Z;E(~a,+2k)) — -+ .
=0
Note that HO(Z;E(— ay) ® @’(Zt)) is the space of global sections of E(—a;) on the ™ formal

neighbourhood of Z in W»; moreover, the obstruction to extending a section from the ™
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formal neighbourhood to the (¢ + 1)t one lives in

r
P H'(Z;E(-a, +2k)) .
k=0

However, since E(—a,) is a bundle of degree Z;;ll (a;i—ay) =0, E(—a;, +2k) is of non-negative
degree for 0 < k < f, and thus all the cohomology groups H!(Z; E(—a, +2k)) vanish for
0 < k < t. Thus any section of E(—a,) on the ™ formal neighbourhood extends to the (t+ 1)st,
Hence, by Grothendieck’s existence theorem ([Gro61, 5.1.4]), the section s extends to an
actual neighbourhood of Z in W,, and consequently there is an exact sequence on W, of the
form

0— Ly, — E—F,_] —0.

Corollary 3.12. Every algebraic vector bundle on W, = Tot(Op1 (—2) ® Op:) is filtrable.

Proof. Every such bundle is already determined on a finite infinitesimal neighbourhood of
Z. O

Unlike in the case of Wi, however, there are non-algebraic bundles on Z. Tt follows from

Peternell’s Existence theorem, though, that all such bundles do in fact extend to an analytic
neighbourhood of Z.

3.4 The endomorphism bundle

If the bundle E is given by transition matrix T = (ZOJ Z’f’ ; ), then the bundle End(E) = E® E* is

given by the transition matrix 7 ® T”. After a convenient change of coordinates given by

01 0O
1000
p:= =P
0 0 01 ’
0010
we will express the transition matrix of E® E* as
1 zlp z7ip  p? 1 —z7lp -zlp p?
0 z% 0 sz _ 0 z2% 0 —z‘jp
S:=P(TeTT)P= . . , sl= . )
( ) 0 0 z% zp S0 0 0 2 —Zip
0 O 0 1 0 0 0 1

We are interested in H i(Zk;éondE) for i = 0,1. Like before, H? is the space of sections
(a,b,c,d) € T(U;EndE) =: Ty such that S(a, b, ¢,d) € Ty, while H! is the space of sections
I'yny moduloT'yeTy.

A typical component of a section on U is given by a(z, u) = Y, ;>0 arsz°u’, and a section
onUnVisgivenby a(z,u) =Y 50 X% _o arsz°u’". We have

a a+z/pb+z7 pc+p*d
S bl _ z2]:b+szd

c|l z%lc+z  pd

d d
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We use this explicit form in the sequel to compute numerical invariants of the endomorphism
bundle &nd(E).

3.5 Numerical invariants

By contrast to the case of bundles on surfaces, it is rather more involved to find numerical
invariants of bundles on our threefolds W;, i = 1,2, 3. First, only on W is the zero section Z
contractible, so the concepts of width and height only make sense on Wi, but not on W, or Wjs.
Moreover, for codimensional reasons the width always vanishes on W (see [BGK09, Lemma
5.2]). In this section we define several new numerical invariants that contain geometric
information and provide a way of partitioning the moduli. These new numbers are “partial”
invariants arising from restricting to a subspace, and invariants of the endomorphism bundle.
The spaces W; contain two distinguished subsurfaces D; and D, (in fact degree-1 Cartier
divisors), which are given in our canonical coordinates by the equations Dy n U = {v = 0}
and Do N U = {u =0} on the U-chartand by DNV = {ziv =0} and D, = {z>~'u = 0} on the
V-chart. By restricting to these surfaces, we define the following partial invariants:

Definition 3.13.

w'(E) = w(Elp,) w"(E) = w(Elp,)
h'(E) = h(Elp,) h"(E) = h(E|p,) (3.11)

Note that on W) both subspaces D; and D, are isomorphic to Z; = Tot(@’ﬂm (—1)). On
W,, we have D, = 7, = Tot(@pl (—2)), but D; = C?, so we will only consider the restriction of
bundles to D,. (In fact, we have an entire families of divisors from the pencils spanned by D;
and D,. We will see this again later when we look at examples of moduli.)

Next we examine the endomorphism bundle &nd(E), which behaves very differently on
Wi and W,. The space W) is very similar to the surface Z; in many ways. On W, the first
cohomology group of &nd(E) is finite-dimensional, so its dimension is an invariant. We
define:

h'(E)
Ay

hl(Wl; &ndE)
R (Wi; End(Epii)) — h' (Wh; End(E)) (3.12)

The zeroth cohomology group of &ndE is infinite-dimensional, and we employ the same
strategy as on Z;: The infinitesimal neighbourhoods Z!" are projective schemes, so the
restrictions of &nd(E) to them have finite-dimensional cohomologies. Also, we can compute
those dimensions for the endomorphism bundle of the split bundle of the same splitting
type as E (denoted by Esplit) and compare them. As m increases, this difference is eventually
constant, and this gives our second invariant:

Ao = lim (R°(Wh; End(Expiiolem) = h°(Wa; End(E)lgun)) (3.13)

n—oo
The numbers we have just defined are not independent and satisfy several relations.

Proposition 3.14. For all rank-2 bundles E on X = Zi, Wy, W,
h'(X; EndE|pm) — h°(X; EndElpm) = h' (X; End(Egpii))l gom) — h°(X; End(Espiie) | pm) -
Proof. We can express the statement in terms of the Hilbert polynomial

Ggm @) =y (F™ @) = hH(X; Flpm (1)) = h°(X; Flpom (1)
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for any coherent sheaf % on X; then the statement is
(PéandE(’”) 0) = (pé?’ndE("l’? 0).
split

But in fact we have ¢ g, 5o (1) = ¢ (n) for any nand m, since the Hilbert polynomial is ad-
split

ditive for short exact sequences of coherent sheaves over projective schemes (see Proposition
3.16 below), and E"™ is the extension

0 — Gyom (= j) — E™ — Gpom (j) — 0.
Thus both &nd E and &nd Egpjic have a filtration
0—F —F—F—F—0,

where F) = 0(-2j), F,/Fy 20, F3/F, =0, F4 /F; = 0(2}), and thus their Hilbert polynomials
coincide. O

Corollary 3.15. For all rank-2 bundles E on X = Zy, Wy, we have Ay(E) = A1 (E), or equiva-
lently Ao (E) + h' (E) = h'(X; nd(Egpiir)).

Proof. This follows from Proposition 3.14 by fact that H' (X; &ndE) is already determined on
a finite neighbourhood Y c X and by unravelling the definitions of Ag and A;. O

Proposition 3.16. Suppose (X,0x) is a projective scheme with a fixed, ample twisting sheaf
Ox(1),and0 — F' — F — F" — 0 a short exact sequence of coherent O x -sheaves. Then the
Hilbert polynomials satisfy ¢g = bg' + pgr.

Proof. By definition of ampleness, there exists a number n such that &(n) is generated
by global sections for & = %',.%, %", and thus H'(X; &) = 0 for i > 0, and thus ¢¢(m) =
h°(X; &(m)) for m = n. The short exact sequence of the hypothesis induces a long exact
sequence

0— H°(X; #'(m)) — H°(X; #(m)) — H°(X; &"(m)) — HUX;-F"m)),
and the result follows. O

Lemma 3.17. Let E be an extension of type 2.1 with splitting type j on either Z; or Wy. Then
the Hilbert polynomial of E|¢m is

(m+1)(km+2+2n) on Zy, and

n—x(E™m) =Y. (-D'r'(¢"; Em) =

il ) ; ( ) 3(m+2)(m+1)2m+3n+3) onW,
independent of the extension class, and independent of the splitting type j. Similarly, the
Hilbert polynomial of the endomorphism bundle End E| ym is 2y (E'™ (n)).

Proof. Tt follows from the proof of Proposition 3.14 that the Hilbert polynomials in question
are determined by the Hilbert polynomial of the line bundles &, (p) for all p. Since G pom (1)
is ample, the higher cohomology of G, (p) vanishes for sufficiently large p. (We can verify
this by direct computation.)

Being a polynomial, the Hilbert polynomial is determined by finitely many values, so
it suffices to compute ¢g,qpm (1) = h°(€"™; G, (p)) for large p. By the additivity of the
Hilbert polynomial (Proposition 3.16) and the fact that E and &nd E have filtrations by line

25



Moduli of bundles on local surfaces and threefolds 26

bundles (as given in the proof of Proposition 3.14) which restrict to filtrations on every
infinitesimal neighbourhood ¢, we compute:

Gpon (1) = 46,y () (M) + 6, () ()
Genapm (M) = 6,4 (2 (1) + 2P0, (M) + Do,y 2) (1)

We conclude this proof by computing H°(¢™); @(p)). Now we have to consider the
spaces Z; and Wj separately.

On ¢ c Z;, asectiona€ O(p)(U)isalz,u) =YX ¥, arsz*u” suchthaty, s a,sz° Pu’
is holomorphic in (z71, zkuw), ie. s— p < kr. Thus

m kr+p

alz,u) = Z Z arsz’u”,

r=0 s=0

which has %(m +1)(km+2+2p) =: e (p) coefficients.
On ¢ c Wy, asection a € O (p)(U) is alz,u, v) = L2 X" Y% asrsz*u” v' such that
Y irsArrsz® Pu" vt is holomorphic in (z71, zu, zv), i.e. s— p < r + t. Thus

m m—t r+t+p

R .

alz,u,v) =Y Y. Y aysZu'vt,
t=0 r=0 s=0

which has £ (m+2)(m+1)(2m+3p+3) =: p¢(p) coefficients.
Putting it all together, we have

Gpm(n) = ¢o(-j+n)+¢e(j+n),
bgnapm(n) = ¢o(=2j+n)+2¢e(n) +pe2j+n),
which gives the desired functions. O

On W, the situation is different. Since W> = Z, x C, the Kiinneth formula shows that both
the zeroth and the first cohomology groups of &nd(E) are infinite-dimensional. But when
we use the same strategy and compare the dimensions of the cohomology groups of the
restrictions to the m™ infinitesimal neighbourhood of &nd(E) and &End(Egpyip), we find that
their difference increases linearly in m.

In fact, more is true. Rearranging the equation of Propositon 3.14, we see that

K (X; &nd(Espiin)|x)) — h°(X; EndElx) = h' (X; End(Espri))) — h' (X; ndElx) =cm+d,

so we obtain two numbers, the slope ¢ and the intercept d of the dimension difference
function. (If we had made the same definition on W;, we would justgetc=0and d = Ag = A;.)

Example values on Wj are tabulated in Table 3.1 and on W in Table 3.2, and we summa-
rize the numerical invariants that we can compute on the spaces W;, W, and Ws:

Wy height, i/, h", w', w", Ao, Ay, h!
W, h',w" ¢ d
W3 h// w”

Conjecture: On the surface Zi, we have w(E) + h(E) = y(E) = W + %
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ip Ao Ay RY (w',K) (W' k") height
3 0 0 0 35 (63) (6,3) 4
3 u 15 15 20 (1,2 (6,3) 3
3 zu 15 15 20 (1,2 (6,3) 3
3 v+u 15 15 20 (1,2 (1,2) 3
3 v+zu 18 18 17 (1,2 (1,2) 2
3 Z’u 10 10 25 (3,2 (6,3) 3
3 z7lu 10 10 25 (3,2 (6,3) 3
3 z'u+u 15 15 20 (1,2 (6,3) 3
3 zlu+zu 15 15 20 (1,2 (6,3) 3
3 z'w+z%u 15 15 20 (1,2 (6,3) 3
3 z7'u+z’v 16 16 19 (3,2 (3,2) 2
3 zWw+z2u 16 16 19 (3,2 (3,2) 2
3 z7lu+z'v 10 10 25 (3,2 (3,2) 3

Table 3.1: Example data on W;. Observe that k! (or A)) is a finer measure of genericity than

the height.

j p Co d() C1 dl H (w”, h”)
3 0 0 0 0 0 0 2,2)
3 u 2 0 2 9 0 (1,2)
3 zu 2 1 2 9 2 0,2)
3 Z’u 2 1 2 9 0 (1,2)
3 Z’u+u 2 1 2 9 2 (0,2)
3 z7% 3 -3 3 12 6 2,2)
3 Z%v 3 0 3 12 3 2,2)
3 Z’v+u 3 0 3 13 4 (1,2)
3 z7ly 4 -2 4 16 3 2,2)
3 zv 4 0 4 16 4 2,2)
3 u+zv 4 0 4 17 5 (1,2)
3 u+z! 4 -2 4 16 6 (1,2)
3 zu+zlv 4 -2 4 16 6 0,2)
3 v 5 -1 5 20 6 2,2)
3 u+v 5 -1 5 20 6 (1,2)
3 zu+v 5 -1 5 20 6 0,2)
3 zZv+v 5 -1 5 20 6 2,2)

Table 3.2: Example data on W,.
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Space Split bundle E; Generic bundle G;

—z(z" + z2"+ z+1
Ze k=2n z(z zZ"+z+1)

(z—-1)2(zF-1) K232,

_Z(zzn+l+z+1) (Z_l)z(zk_l)
Zik=2n+1
(z-1)%(zF-1)
z(z+6)+1 z2(-z2+2z+1)
W = == =
(z—1* (z—1)*

Table 3.3: Generating functions for h'!(&ndE) on various spaces for the split and the generic
bundle of splitting type j (data for G; only valid for j = k); the value is the j® coefficient in
the Taylor series.

New invariant? It appears that on W, we always have ¢y = c;. Therefore we can define a
new number

H(E):= lim [ (B (Wa; End Egpil ) — h' (Wa; End Elgon)

— (R (Wa; End Eqgitlgom) = B (Wa; EndElgon)) | = 1im($,y,m(0) = prm(0)) ,

where we used the notation “H” to indicates the relation to the Hilbert polynomials.

Remark 3.18. The corresponding quantity H on the space W, is always zero, which is equiv-
alent to the identity Ay = A; proved above.

Direct computation lead us to discover a compact expression for the number h'(&ndE)
on the spaces Z; and W, where & is either the generic or the split bundle of splitting type j
(with j = k on Zj).

Definition 3.19. A power series of the form g(z) = Z‘;‘;O aj z/ is called a generating function
1dig
.00 - _ 9
for the sequence (aj)}Z,- Hence, a; T dal |
In Table 3.3 we present the generating functions for the series a’'* := h!(§nd E) on the
spaces Z; and W for the generic and the split bundle of splitting type j. A few series for
special values can be listed explicitly:

* For the split instanton bundle Ej, j = kn on Z, hl(Zk; &ndEj) =n2nk+k-2).

* For a generic instanton bundle G, j = kn on Zi, we have hl(Zk; &ndGj) = n(nk +
2k—-2)—1for k=2 and h'(Z;; éndG)) = j>.

¢ On W, we have for the split bunlde E;, h! (Wy; &ndE;) = (4% - j)/3. This equals the
number of coefficients in the generalised extension class p in Remark 3.3.

3.6 Moduli

If we restrict our attention to the moduli space of bundles that are extensions of line bundles
and do not split on the first infinitesimal neighbourhood, we can apply Equation 1.1 to all
three of the spaces Wj, W, and Ws.
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Proposition 3.20. The part of M(W;; j), i = 1,2,3, which consists of extensions that do not
split on the first infinitesimal neighbourhood Z\V is smooth and has dimensiony; -1, i.e.

dim (MM (j)|generic) =4j—5 forj=2.

Further, the generic set of M(1) is empty on Wy, a point on W, and one-dimensional on Ws.

Proof. Let C" be the space of coefficients p1o; and pg1s of p. By Proposition 3.5 the only
isomorphisms on ¢ M are scaling, and thus 91(j)|generic is obtained by projectivising the open
subset of generic coefficients of the affine space C*.

Now we just compute y; directly as in Equation (1.1): We have F = Op1(—j) ® Op1(j), so

EndF = 0pi (-2)) ® O & Op1 (2) = (EndF) .

Also,
Ny x, = Op (-1)%? Ny x, = Op1 (—2) & Op: Nox, =0p (=3)®0p (1)
and by Serre duality,
1 = h(¢ (ndFeN; )Y ewp)
= h°(¢; &ndF)Y ® Ny x, ® wp)
= 4(j—1) forall X;and j=2.
The results for j = 1 follow from the same computation. O

Remark 3.21. The result is of Proposition 3.20 is sharp among the spaces W; in the sense
that it is only true for i = 1,2, 3; for any i > 3 the value of y, is greater than 4(j —1).

3.6.1 Bundleson W;

The space W, := Tot(Op: (—1) ® Op1 (-1)), also known as the space of the simple flop, was
already studied in passing in [BGK09]. Here we present a more detailed treatment, which
also illustrates the connection between the parameter space of bundles and the moduli of
isomorphism classes of extensions. We give an explicit description of 2t(W; j) for small j:

Proposition 3.22 (Moduli on W, for j =0,1).
Let E be a bundle on W, of splitting type j = 0. Then E = 0%2, i.e. E is trivial.
Let E be a bundle on W) of splitting type j = 1. Then EZ 0 (1)  O(-1), i.e. E splits.

Proof. This follows immediately from Proposition 3.1: On W; for j =0 or j = 1 we can
always write the extension as p = 0, so every rank-2 bundle of this splitting type is the split
bundle. O

Remark 3.23. Thus there are no “generic” bundles of splitting type 0 or 1 on W, i.e. no
bundles that do not split on Z™),

Proposition 3.24 (Moduli on W for j =2). Let E be a rank-2 vector bundle on W given by
the transition matrix

(z2 plz,u, v))

0 z72

The space of isomorphism classes of such bundles is the set
{(Pow, po11, Ploo,lﬂlol), Po21, onbmu} cC’
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modulo a set of relations presented at the end of the proof.

Proof. By Proposition 3.1, a bundle on W; with splitting type j = 2 is determined by its
extension class

2 2
p(z,u, v) = (po10 + Po112) U+ (P1oo + P1012)V + Po212U” + P2012V° + P1112UD .

Suppose we have two such bundles E and E’, given respectively by extension classes p and q.
We write p| ;o for the restriction to the first formal neighbourhood, i.e. to terms that have
total degree < 1in u, v; so

ple, (z,u,v) = (po10 + po112) U+ (P1oo + P1012)V,

and similarly for g.

If E = E', then by Proposition 3.5, p| ;0 = Aq| ;0 for some A € C*, and by rescaling we
may assume that A = 1. (We return to this point at the end of the proof.) Now we identify
sufficient conditions for an isomorphism: The isomorphism, if it exists, can be written as

W IR P [ e e

A+z2pC Z*B+z*(pD-qA) - pqC
z74C D-z"2%gC

’

where A, B, C, D are holomorphic on UN Zand a, B,v,6onVn Z i.e. power series in (z, u, V)
or (z71, zu, zv), respectively. As usual we write A=Y a,,sz°u" v’ etc.

First, the condition that the (2,1)-entry be holomorphic in (z71, zu, zv) implies

+I+
Z trszsurvt .

||
||M8
||M8

Next, the condition of holomorphy of the diagonal entries yields the following relations
for the terms of the power series A and D:

ap12 po11  Polio 0 0 €001
_|es|_| O poux poro O [[coo2
apl4 0 0 poi1  poio || coo3
aop1s 0 0 0 po11/ \Ccoo4
ai02 p101  P100 0 0 €001
_|@o3|_| O plo1  P1oo 0 || coo2
aio4 0 0 p1o1  P1oo || coo3
aios 0 0 0 p101/ \Coo04
ap23 poi1  Po1o 0 0 €012 po21 0 0 0Y (o002
_|ao2a|_[ O pour poro O [jeois| [ O po2r O  Offcoos
ap2s 0 0 po11  polo || co14 0 0 po21 0| cooa
ap26 0 0 0 po11/ \co15 0 0 0 0/ \coos
a203 P01 P1oo 0 0 €102 p201 0 0 0Y [ coo2
_|a0a|_[ O pro1 proo O [jcios| [ O p2o1 O  Offcoos
ao5 0 0 p1o1  Pioo || c1o4 0 0 p201 0| cooa
a06 0 0 0 p101/ \c105 0 0 0 0/ \coos
ais pP101  P1oo 0 0 C012 po11  Poio 0 0 €102 pi11 0 0 0\ (coo2
_|ana|_[ O pro1 proo O f[feors| | O  pour powo O fferosf | O pir O Offcoo3
ais 0 0 p1o1  P1oo || co14 0 0 po11  poio || c1o4 0 0 pin1 - 0| coosa
a6 0 0 0 p101/ \co15 0 0 0 po11/ \c105 0 0 0 0/ \coos
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do12 po11  Polo 0 0 ) (coo1
dois{_| O  poir poro O [fcooz
do14 0 0 po11  Polo || coo3
do15 0 0 0 po11/ \coos
di102 P01 P1oo 0 0\ (coo1
digs[_| 0  pror poo O [fcooz
dy04 0 0 pro1  P1oo || coo3
d10s 0 0 0 pio1/ \coos
do23 Poil  Polo 0 0 €012 Po21 0 0 0\ (coo2
doza|_| O pour poro O ffeors| | O pozr O  Offcoos
do2s 0 0 poi1  Poio || co14 0 0 po21 0| cooa
do2e 0 0 0 poi1/ \cois 0 0 0 0)\coos
dao3 pP1o1  P1oo 0 0 €102 p201 0 0 0\ (coo2
doa|_| O  por proo O fferoz|, | O po1r O Offcoos
da0s5 0 0 p1o1  P1oo || 104 0 0 p201 O[] coos
dao6 0 0 0 p1o1/ \c105 0 0 0 0/ \coos
diis p101  P1oo 0 0 €012 poi1  Po1o 0 0 €102 pi11 0 0 0\ (coo2
dug|_| 0 por poo O |feoiz| [ O pour poro O ffewos| [ O pinr O Offcoos
d115 0 0 p1o1  P1oo || co14 0 0 poi1  Ppo1o || c104 0 0 piir - O[] coos
di16 0 0 0 p1o1/ \co15 0 0 0 po11/ \c1o5 0 0 0 0/ \coos

Lastly, the (1,2)-entry,
2B+ 22 (pD-qA) - pqC,

has to be made holomorphic in (z7Y, zu, zv). Since z*B can be chosen to cancel higher
terms, we only need to consider those terms z°u" v’ with s > r + t and s < 4 in the expression
z2(pD-qA) - pqC.

Recall that A and D are of the form 1+ u(...) + v(...) and that we have already set p| ;) =
qlzw. Thus the coefficients of # and v are zero. It remains to find the coefficients of the terms

u?, v> and uv. From this we get three equations:

0 = (Po21 — do21) — Co03 P10 — 2C002 Po10Po11 — €001 Po11

+po1o(dor1 — ao11) + po11(doro — do10) (3.14)
0 = (p201—g201) — Co03 P%oo —2€002 P100P101 — C001 P%m

+p1oo(dio1 — aio01) + pP1o1(dioo — @100) (3.15)
0 = (p111—4g111) —2¢o03 Po1oP1o1 — 2002 (Po1oP1o1 + Po11P10o)

—2¢001Po11 P101 + P1oo(do11 — ao11) + Poro(dior — ai01)

+p101(do1o — do10) + Po11(dio0 — @100) (3.16)

Finally we describe the moduli of extensions of splitting type j = 2 as the space of coeffi-
cients
X:= {(Pow, Po11, P10o, P101), Po21, P201, Pm}

modulo relations that we infer from the above equations:
1. If (po10, po11) # (0,0), Equations (3.14) and (3.16) can be solved for any pg21, p2o1, P111-
2. If (p10o0, p1o1) # (0,0), Equations (3.15) and (3.16) can be solved for any pg21, p201, P111-

3. If all first-order coefficients vanish, the three equations imply that all the second-order
coefficients are equal.

Thus the moduli consists of the following sets:

1. The generic set S := {po10, Po11, P100, P101}/C*, where (po10, po11) # (0,0) and
(P100, P101) # (0,0),
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N

the set T3 := {(0,0, p10o, p101), Po21}/C*, where poo1 € C and (p100, p101) # (0,0),

w

. the set T := {(po10, Po11,0,0), p201}/C*, where p2o; € C and (po10, por1) # (0,0),

=

the set {(0,0,0,0), poz1, p201, P111}/C*, where (po21, p201, p111) # (0,0,0), and
5. the split bundle (all p;;s = 0).

Conclusion: The moduli of extensions of splitting type j =2 on W) is
MWy;2) = Su Ty U To LUCP? L {x},
where the generic set is

S={[po10: po11: Pioo: pro1l € CP*: (po10, po11) # (0,0) and (100, p101) # (O, 0)}.

Furthermore,

T
T

{[p100: Pro1: Po21] \[0:0: 1]} =CP?\ {x} and
{[po10: po11: 2011\ [0:0: 11} = CP?\ {x}.

The generic set S has dimension 4-2 —5 = 3, as in the dimension count Proposition 3.20
promised. Also, S is a proper subset of C*, since the bundles with (p100, p101) = (0,0) or
(po10, po11) = (0,0) are not generic, and those form a closed subset. Note that the generalised
extension class for j =2 is

~ -1
p(z,u,v) = poo,-12  + Pooo + Poo1z+ (Poio + Po112) U

2 2
+ (P100 + P1012) UV + pPo212U” + P2012V° + p1112Uv,

which has y = 10 coefficients, in accord with Remark 3.3, the first three of which are deforma-
tions along Z into bundles of lower splitting type.

We can express this result compactly as follows: The moduli 9t(W;; 2) is the space of
orbits in C’ of the action

Po1o A 0 0 0 0 0 0)/(pow
Po11 0 A 0 0 0 0 Offpon
P100 0 0 A 0 0 0 Offpioo
poi[—]0 0 0 A 0 0 Of|pio1],
Po21 a; az 0 0 A 0 O]fpoz
pin as ag P33 Ps 0 A O)|pin
P201 0 0 p1 P2 0 0 A)\pom

where 1 € C* and a;, B; € C for i = 1,...,4. Note that the group G that acts is not reductive,
and thus the quotient is not amenable to standard GIT techniques. Explicitly, G is given as
the extension 0 — (C*, x) — G — (C,+)® — 0.

We see directly that the restriction of the action of G to the subspace C* spanned by
{Po10, Po11, P100, P101} reduces to C*, which acts faithfully, and this subspace is the largest
subset whose quotient by the G-action is Hausdorff. The set of generic bundles that we
identified above is a Zariski-open subset of this quotient.

The numerical invariants h, k', w', h", w" and h' help distinguish the different types of
bundles, and they are tabulated in Table 3.4. The table gives also the additional numbers Ag
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plz,u,v) cpt.of MWy;2) h K w K w' h' A A
0 {x} 1 1 3 1 3 10 0 0
ZUv Ccp? 1 1 3 1 3 9 1 1
zu? CcP? 1 1 2 1 3 9 1 1

v 15 1 1 3 1 1 7 3 3

u T 1 1 1 1 3 7 3 3
u+v S 1 1 1 1 1 7 3 3
U+2zv S 1 1 1 1 1 6 4 4

Table 3.4: Numerical invariants of several bundles on W of splitting type j = 2.

and Aj, but recall that they are determined by h!. While those numerical invariants are not
quite sufficient to give 99t(W;; 2) a Hausdorff decomposition, it does suffice to identify the
generic set S, which is the one where the sum of the 1/, w’, b/, w” is minimal; or alternatively
where h! < 7.

Table 3.4 exhibits another phenomenon: The two bundles given by zu? and zuv are
clearly in the same part of the moduli and related by a change of coordinates, yet the partial
invariants w’ and w” differ; the “correct” value is given by w(E+v=0)) = 3. To make the use
of partial invariants general, we could devise a family version parametrised by [1 : u] € P!
computing w(Ey+uv=0y)- The number h! actually provides a finer invariant than needed, as
the generic set consists of those bundles with k! <7.

3.6.2 Bundles on W,

The crucial difference between W, and W; is that NEWZ = Op1(2) ® Op1 is not ample. We
see both from the form of the canonical extension class in Proposition 3.1 and from the
dimension count (1.1) that the parameter space for extensions p(z,u,v) = Y psrsz’u” vt
is infinite-dimensional, and it is clear that there exist non-algebraic bundles, e.g. on the
subspace Tot(0 & Op1). Nonetheless, we saw in Theorem 3.11 that every bundle on W5 is still
filtrable.

This means that the moduli of all rank-2 bundles with vanishing first Chern class is still a
union of moduli 9(W>; j) of extensions of fixed splitting type j. Even though each 9t(W5; j)
is now in some sense infinite, we can still attempt to describe it. We start with a few moduli
MM (Ws; j) for small j. The case j =0 is easy:

Proposition 3.25 (Moduli on W, for j = 0). Let E be a bundle on A, of splitting type j = 0.
Then E= 02, i.e. E is trivial.

Proof. This follows immediately from Proposition 3.1: On W5 for j = 0 we can always write
the extension as p = 0, so every rank-2 bundle of this splitting type is trivial. O

For j =1, Proposition 3.20 shows that there is only one single generic bundle. The full
space 2 (W>; 1) can be described as follows. Substituting j = 1 into Proposition 3.1, we see
that the polynomial p must be of the form p(z, u, v) = X%, proov’.

Proposition 3.26 (Moduli on W5 for j =1). Let E,, E; be two bundles on W, of splitting type
J = 1 determined by polynomials p, q, respectively. E,, and E, are isomorphic if and only if
one of the following to conditions hold:

e Ifp=0=0;0r
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o ifp1 #0#qy; or
* ifpi=0=gq; fori=1andpis1 = qiv1 #0.

Proof. We determine conditions for E4 and E; to be isomorphic by rerunning the proof of
Proposition 3.24: We need transformation matrices

O I O e
y & 0 z')\c DJ\0o =z
(A+z—1pc Z?B+z(pD - qA) - pqC
z72C D-z1gC '

where A, B, C, D are holomorphic on U and a, $,y,8 on V 0/, i.e. formal power series in
(z,u,v) or (z_l, z2 u, v), respectively.
First, the condition that the (2,1)-entry be holomorphicin (z71, z%u, v) implies

gl

oo 2r+2
C=) > > cus2u'v'.
r=0 s=0

t=0

Second, we obtain another set of equations like those on page 30, which we omit here to
avoid cluttering the presentation.
Finally, the (1,2)-entry
Z’B+z(pD-qA) - pqC

has to be made holomorphic in (z7!,z%u, v). Since z?B can be chosen to cancel higher
terms, we only need to consider those terms z*u” v’ with s > 2r and s < 2 in the expression
z(pD — qA) — pqC. This leaves only the terms zv’ with ¢ > 1. Moreover, by Proposition 3.5,
E = E' implies that we can scale g such that pls, = gl¢,. Thus in fact we only need to consider
r=2.

z ( (p1v+p2v2+p3v3+---)(1+u(...)+ v(d100+d101z+d10222+---))

—(p1U+qu}2+Q3U3+"')(1+ u(...)+v(aygo + ar01z+ 61102Z2+"'))]
) 3 ) 3 oo 00 2r+2
—(prv+pev +psv’+-)(prv+ qev + qsv’ + ) Y cusz’uvt
t=0 r=0 s=0
We obtain an infinite series of equations. The first few are:
For v’z:  pi(dioo — @100) + (P2 — 42) — picoor = 0.

For 1%z p1(dz00 — az00) + (p2dio0 — G2ai00) + (P3— q3) — P%Cwl —(p192+ p2g1)coo1 =0.

From this we obtain the following infinite list of families of extensions:

¢ The split bundle, p = 0.
* One “generic” bundle p = v, isomorphic to all p = p1v + ¥ ;=5 p2v? for p; #0.

e Afamily p = pov? with p, € C*, each member being isomorphicto p = pov>+Y ;25 p: v’

Afamily p = p3v® with p3 € C*, each member being isomorphic to p = p3v3+Y. ;54 pr V',
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3.6.3 Bundles on W3

On Wj := Tot(Gp:1 (—3) ® Op:1 (1)) the conormal sheaf N 7w, is notample, but unlike on W it is
not even possible to express every vector bundle as a filtration. In particular, there are rank-2
bundles that are not extensions of line bundles, and the transition functions need not be
algebraic (e.g. on the subset Tot(0 ® Op:1 (1))).

Note however that for purely dimensional reasons,

h*(Z; &ndF & S" (N, /) =0

for every vector bundle (in fact, coherent sheaf) F on Z, and that it is thus possible to extend
F to a bundle E on Z such that E|; = F; however, just like on W, there are now infinitely
many non-zero terms in the sum in Equation (1.1), i.e. infinitely many directions in which to
extend.

If we only consider rank-2 bundles that are extensions of the form (2.1), we still know
from Proposition 3.5 that the space of extensions modulo isomorphisms has a generic set of
dimension 4j —5.

When j = 0we have p|;u = 0 by Proposition 3.1. However, there are many non-equivalent
bundles on W, even for j = 0. For j = 1, we have a one-dimensional family of generic
extensions given by pigov + plyoy_lz_l v (modulo projectivisation).

Example. The bundle E on W3 given by the transition matrix
T (1 : v z! v)
z7v 1

is not isomorphic to an extension of line bundles, and E| is trivial.

3.6.4 Structure on the moduli

There is a priori no inherent structure on our moduli of extensions of line bundles modulo
isomorphisms. We define ad hoc a topology on 9i(j) by defining

M) := ( {coefficients p;,s} < C’”) /isomorphisms

and endowing 2(j) with the quotient topology. This is still not Hausdorff, since for instance
the split bundle O (—j) ® O(j) is “near” every bundle in this topology. Here

o0
Y+= . h'(Z; ndFe S"(N} ) < oo
n=1

is the number of coefficients in p according to Proposition 3.1.

In [BGK, Section 4] it was shown that in the analogous situation of bundles on the
surfaces Tot(@[pl (—k)) there exists numerical invariants, namely the width and height which
we defined in (2.5) and (2.6), which decompose 91(j) into Hausdorff components.

We remarked that in our three-dimensional cases, the analogue of the width always
vanishes, and the height is finite only on Wj.

Generalisations. After having studied numerous examples in detail, we can make a few
generalising remarks. If Z = P! is a line inside any complex space W and N 7 w is ample, then
as discussed in § 2.2, bundles on an analytic neighbourhood N(Z) are determined on a finite
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infinitesimal neighbourhood Z™), and the situation is modelled on
Wi = TOt(Nzlw) = TOt(@@[pl (- kl)) R
i

where k; > 0 for all i. Bundles on Wy are filtered and algebraic by [BGK09, Theorem 3.2]. A
rank-2 bundle E on W still splits as Op1 (—j) @ Op1(j) on Z, and the dimension of the generic
set of the moduli space 991(j) of extensions of splitting type j modulo bundle isomorphisms
can be calculated as the y;-term in Equation (1.1). Each surface D; := Tot(@’nm (—ki)) in Wi
is now of the form Zj, as studied in [BGK], and a bundle E is generic if it is generic on
each D;. Expressed conversely, if a bundle E given by the extension class p, which only
has terms of order 1 in the fibre directions, is not generic, then its restriction to some D;
will be the split bundle, which can be identified by its numerical invariants according to
[BGK]. Among all bundles which have only terms of first order in the fibre directions in their
extension class, the generic ones are precisely those for which the sum of all partial invariants
Y.i(h(Elp,) + w(E|p,)) is minimal.

Theorem 3.27. There exists a two-parameter family of embeddings @ ;: M(j) — IM(j + 1),
(s,1) € P xP1, such that Us,; ®s,(9M(j)) = MG +1) — S(j + 1), where S(j + 1) is the set of
bundles of splitting type j + 1 that do not split on the second infinitesimal neighbourhood.

Proof. Suppose E is a bundle on W; of splitting type j given by the polynomial p(z, u, v). For
la; : b1], [az, bo] € (P1)?, there is amap

q)[mibl]y[ﬂbbz] M) —-M@G+1D

which is the composite of two elementary transformations over the divisors D; = {a;u + b; v},
i = 1,2 followed by a twist by & (-1):

®@4,:b,),[az,b,1 (E) = (Elmp, o Elmp, ) () ® G (-1)

If the bundle & is of splitting type j and given by the polynomial p, then &' := ®4,.1,1, 14,5, ()
is given by z(aj u+ by v)(azu+ bov) p. Furthermore, &'| ; 2 Op1 (—j — 1) ® Op1 (j + 1), so &' is of
splitting type j + 1, and &’ fits into the exact sequence

0—0O-j-1)—& —0(+1)—0.

By construction, &'| ;&) =0z (—j—1) ® G 40 (j + 1), that is, bundles in the image split on the
second infinitesimal neighbourhood of Z.

It can be seen by direct computation that every bundle of splitting type j + 1 which splits
on Z? is in the image of ®4,.p,1,(a,b,]- FOT this, one observes that every polynomial in the
canonical form from Proposition 3.1 which is of total (1, v)-degree = 3 and of splitting type
j+1 can be written as z(a; u+ by v)(ax u + by v) g for some other polynomial g of splitting type
j O
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