
THE NEKRASOV CONJECTURE FOR TORIC SURFACES

ELIZABETH GASPARIM AND CHIU-CHU MELISSA LIU

Abstract. The Nekrasov conjecture predicts a relation between the partition
function for N = 2 supersymmetric Yang–Mills theory and the Seiberg-Witten
prepotential. For instantons on R4, the conjecture was proved, independently
and using different methods, by Nekrasov-Okounkov, Nakajima-Yoshioka, and
Braverman-Etingof. We prove a generalized version of the conjecture for in-
stantons on noncompact toric surfaces.
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1. Introduction

1.1. Background. The Nekrasov conjecture [Ne2] predicts a surprising relation
between two seemingly unrelated quantities: the partition function for N = 2
supersymmetric Yang–Mills theory, defined in terms of instantons on R4, and the
Seiberg-Witten prepotential [SW], defined in terms of period integrals of a family
of hyperelliptic curves. For gauge group U(r), Nekrasov and Okounkov proved the
conjecture for a list of gauge theories (4d pure gauge theory, 4d gauge theory with
matter, 5d theory compactified on a circle) [NO], Nakajima and Yoshioka proved
the conjecture for 4d pure gauge theory [NY1] and for 5d theory compactified
on a circle [NY2] (see also Göttsche-Nakajima-Yoshioka [GNY2]). Braverman and
Etingof proved the conjecture for 4d pure gauge theory with arbitrary gauge groups
[BrE].

In this paper we prove a generalized version of the conjecture for instantons
on noncompact toric surfaces. Instantons on toric surfaces have been studied in
[Ne3, GNY1, GNY2].

In field theory terms, Nekrasov’s insight involves a comparison of the infrared
and ultraviolet limits of the SUSY gauge theories, as follows. The vacuum expecta-
tion value of their observables is not sensitive to the energy scale. In the ultraviolet,
the theory is weakly coupled and dominated by instantons; whereas in the infrared,
there appears a relation to the prepotential of the effective theory. In this instance,
the physical argument is accompanied by completely rigorous mathematical defini-
tions, thus allowing us to prove the conjecture.

1.2. Partition functions for instantons on noncompact toric surfaces. Let
X0 = X \ `∞ be an open toric surface that can be compactified to a non-singular
projective toric surface X by adding a line at infinity `∞ ∼= P1 with positive self-
intersection number, so that Tt = (C∗)2 acts on X0 and on X. Let Mr,d,n(X, `∞)
denote the moduli space of rank r torsion free sheaves over X having Chern classes
c1 = d and c2 = n, and framed over `∞. Then Mr,d,n(X, `∞) is a smooth variety
over C, and it admits a Tt × Te-action with isolated fixed points, where Te

∼= (C∗)r

is the maximal torus of the complex gauge group GL(r, C) which acts on framings.
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We define ∫
Mr,d,n(X,`∞)

1

by formally applying the Atiyah-Bott localization formula. The above integral is
a rational function in equivariant parameters ε1, ε2 ∈ H2

Tt
(pt) and a1, . . . , ar ∈

H2
Te

(pt). The Nekrasov partition function for supersymmetric SU(r) instantons on
X0 is defined as

Z inst
X0,d(ε1, ε2,~a; Λ) def= Λ(1−r)d·d

∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

1

where Λ is a formal variable. It lies in the ring Q(ε1, ε2, a1, . . . , ar)[[Λ]].
In further generality, given two multiplicative classes A,B we define

Z inst
X0,A,B,d(ε1, ε2,~a; Λ) def= Λ(1−r)d·d

∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

AT̃ (TM)BT̃ (V )

where TM is the tangent bundle and V is the natural bundle on Mr,d,n(X, `∞) (see
Definition 2.9).

1.3. Seiberg-Witten prepotential. We briefly recall the definition of the Seiberg-
Witten prepotential for 4d pure SU(r) gauge theory. Appendix C contains a more
detailed discussion and definitions for other gauge theories.

Consider the family of hyperelliptic curves parametrized by Λ and ~u = (u2, u3, . . . , ur):

C~u : Λr

(
w +

1
w

)
= P (z) = zr + u2z

r−2 + u3z
r−3 + · · ·+ ur.

The parameter space for ~u is called the ~u-plane. The Seiberg-Witten differential

dS =
1

2π
√
−1

z
dw

w

is a meromorphic differential defined on the total space of this family such that

{ωp
def=

∂

∂up
(dS) | p = 2, . . . , r} is a basis of holomorphic differentials on the genus

(r−1) curve C~u. Choose a symplectic basis {Aα, Bβ | α, β = 2, . . . , r} of H1(C~u, Z),
and define

aα =
∫

Aα

dS, aD
β = 2π

√
−1
∫

Bβ

dS.

Then the 1-form
r∑

α=2

aD
α daα is closed, so there exists a locally defined function, the

Seiberg-Witten prepotential F0, such that

r∑
α=2

aD
α daα = dF0, i.e., aD

α =
∂F0

∂aα
.

The above definitions of dS, aα, aD
α are the same as those in [NO], but are

√
−1

times the corresponding definitions in [NY, NY1].
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1.4. Nekrasov conjecture. Let q0, q1 be the two Tt fixed points in `∞ ⊂ X, and
let u, v ∈ Zε1 ⊕ Zε2 be the weights of the Tt-action on (N`∞/X)q0 , (N`∞/X)q1 ,
respectively, where N`∞/X is the normal bundle of `∞ in X. If w is the weight of
Tt-action on Tq0`∞ and k = `∞ · `∞ > 0, then

v = u− kw.

Define

F inst
X0,A,B,d(ε1, ε2,~a; Λ) def= −u(u− kw) log Z inst

X0,A,B,d(ε1, ε2,~a; Λ).

We now state the prototype statement of the conjecture for toric surfaces, which
will have 8 incarnations.

Main Theorem. (Nekrasov conjecture for toric surfaces: prototype statement)
(a) F ···X0,A,B,d(ε1, ε2,~a,m; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.
(b) lim

ε1,ε2→0
F ···X0,A,B,d(ε1, ε2,~a; Λ) = kF ···0 (~a, Λ), where F ···0 (~a, Λ) is the · · ·part of

the Seiberg-Witten prepotential of matter case A,B,m, and k = `∞ ·`∞ > 0
is the self intersection number of `∞.

The 8 cases we prove are
• Instanton part: Theorem 5.21. With the ··· replaced by inst, we prove

the following cases of the conjecture:
(1) 4d pure gauge theory: A = B = 1, m = ∅.
(2) 4d gauge theory with Nf fundamental matter hypermultiplets: A = 1,

B = (E~m)(V ) is the Tm-equivariant Euler class of V ⊗M , where M is
the fundamental representation of U(Nf ), Tm is the maximal torus of
U(Nf ), m = (m1, . . . ,mNf

),
(3) 4d gauge theory with one adjoint matter hypermultiplet: A = Em(TM)

is the equivariant Euler class of the tangent bundle of the moduli space,
B = 1, m = m.

(4) 5d gauge theory compactified on a circle: A = Âβ(TM) is the Âβ genus
of the tangent bundle (the usual Â genus being the case β = 1), B = 1,
m = ∅ but F depends on the additional parameter β.

• Perturbative part: Theorem 6.7. With the ··· replaced by pert, we derive
4 more cases of the conjecture, with same restrictions as in the first part:
(1) 4d pure gauge theory.
(2) 4d gauge theory with Nf fundamental matter hypermultiplets.
(3) 4d gauge theory with one adjoint matter hypermultiplet.
(4) 5d gauge theory compactified on a circle of circumference β.

The instanton part follows by localization, from known results in the C2 case.
Indeed, localization calculations yield an expression of the instanton partition func-
tion Z inst

X0,A,B,d over X0 in terms of contributions from vertices (Tt fixed points in
X0) and and from legs (Tt invariant P1 in X0). Each vertex contributes one copy of
the instanton partition function of C2, for which the singularity along ε1 = ε2 = 0
is already known. The contribution from legs does not introduce more poles along
ε1 = ε2 = 0. A priori, the tangent weights at all Tt fixed points in X0 appear in the
denominator, but an argument similar to that in [Ne3, Section 6.1] shows that these
poles mostly cancel out, and we are left with the two normal weights u, u− kw at
the Tt fixed points on `∞. The perturbative part is fairly straightforward.
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1.5. Outline of the paper. In Section 2, we describe properties of the instanton
moduli spaces. In Section 3, we study torus actions on these moduli spaces and the
fixed point sets. In Section 4, we introduce a general instanton partition function
depending on two multiplicative classes A, B for noncompact toric surfaces; differ-
ent choices of A, B give partition functions of different gauge theories. Section 5
contains localization computations on instanton moduli spaces, and the proof of the
instanton part of the conjecture. Section 6 contains definitions of the perturbative
part of the partition function, and the proof the perturbative part of the conjecture.

1.6. Acknowledgements. This work started during our participation in Program
for Women and Mathematics at the Institute for Advanced Study, Princeton. We
thank the program organizers Karen Uhlenbeck, Chuu-Lian Terng, Antonella Grassi
and Alice Chang for their encouragement and support. We thank Lothar Göttsche,
Jun Li, Hiraku Nakajima, Nikita Nekrasov, Tony Pantev, Nathan Seiberg, Con-
stantin Teleman, and Eric Zaslow for helpful conversations.

2. Moduli Spaces of Framed Bundles on Surfaces

We work over C. Let X be a non-singular projective surface. Let `∞ ⊂ X be a
smooth divisor. In this section, we introduce moduli spaces of framed bundles on X,
and describe basic properties of these moduli spaces, generalizing the discussion in
[NY1, Section 2] on the case X = P2. The framed moduli spaces were constructed
in much more setting by Huybrechts-Lehn [HL].

Given a positive integer r, an integer n, and a cohomology class d ∈ H2(X; Z),
let Mr,d,n(X, `∞) be the moduli space which parametrizes isomorphism classes of
pairs (E,Φ) such that

(1) E is a torsion free sheaf on X which is locally free in a neighborhood of `∞.
(2) rank(E) = r, c1(E) = d and

∫
X

c2(E) = n.
(3) Φ : E|`∞

∼→ O⊕r
`∞

is an isomorphism called “framing at infinity”.

Note that (1) and (2) imply
∫

`∞
d = 0.

2.1. Dimension of the moduli space. Given a divisor D ⊂ X, let E(−D) =
E ⊗OX(−D).

Proposition 2.1. Suppose that `∞ · `∞ > 0.
(a) For any (E,Φ) ∈ Mr,d,n(X, `∞) we have Ext0OX

(E,E(−`∞)) = 0.

(b) Assume in addition that `∞ ∼= P1. Then for any (E,Φ) ∈ Mr,d,n(X, `∞)
we have

Ext0OX
(E,E(−`∞)) = Ext2OX

(E,E(−`∞)) = 0.

Remark 2.2. If X is a non-singular projective surface which contains a smooth
divisor `∞ ∼= P1 such that k = `∞ · `∞ > 0. Then TX

∣∣
`∞

∼= OP1(k) ⊕ OP1(2), so
X is rationally connected, or equivalently, X is a rational surface. The arithmetic
genus of X is pa(X) = χ(OX)− 1 = 0.

Proof of Proposition 2.1. (a) Assuming that `∞ · `∞ > 0, we will show that

HomOX
(E,E(−`∞)) = 0.

Let s be a section of OX(`∞) such that its zero locus is `∞. The exact sequence

0 → E(−(m + 1)`∞) s·→ E(−m`∞) → E(−m`∞)⊗OD → 0
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induces a long exact sequence

0 → HomOX
(E,E(−(m + 1)`∞)) → HomOX

(E,E(−m`∞))
→ HomOX

(E,E(−m`∞)⊗O`∞)

→ Ext1OX
(E,E(−(m + 1)`∞) → Ext1OX

(E,E(−m`∞)) → · · ·

where
HomOX

(E,E(−m`∞)⊗O`∞) ∼= H0(`∞,OX(−m`∞)|`∞)⊕r2

since E|`∞ is trivial. Let k = `∞ · `∞ > 0. Then

H0(`∞,OX(−m`∞)|`∞) ∼= H0(P1,OP1(−mk)) = 0

when m > 0. So, for any positive integer m,

HomOX
(E,E(−(m + 1)`∞)) → HomOX

(E,E(−m`∞))

is an isomorphism, and

Ext1OX
(E,E(−(m + 1)`∞)) → Ext1OX

(E,E(−m`∞))

is injective. As a consequence, any element in HomOX
(E,E(−`∞)) restricts to zero

in a formal neighborhood of `∞ in X. So

HomOX
(E,E(−`∞)) = 0.

(b) We now assume that `∞·`∞ > 0 and `∞ ∼= P1. By Serre duality, Ext2OX
(E,E(−`∞))

is dual to HomOX
(E,E(KX + `∞)). We will show that

HomOX
(E,E(KX + `∞)) = 0.

The exact sequence

0 → E(KX −m`∞) s·→ E(KX + (1−m)`∞) → E(KX + (1−m)`∞)⊗OD → 0

induces a long exact sequence

0 → HomOX
(E,E(KX −m`∞)) → HomOX

(E,E(KX + (1−m)`∞))
→ HomOX

(E,E(KX + (1−m)`∞)⊗O`∞)

→ Ext1OX
(E,E(KX −m`∞) → Ext1OX

(E,E(KX + (1−m)`∞)) → · · · .

E|`∞ is trivial and K`∞ = (KX + `∞)|`∞ , so

HomOX
(E,E(KX +(1−m)`∞)⊗O`∞) ∼= H0(`∞,O`∞(K`∞)⊗OX(−m`∞)|`∞)⊕r2

.

Note that

H0(`∞,O`∞(K`∞)⊗OX(−m`∞)|`∞) ∼= H0(P1,OP1(−2−mk)) = 0

for all m ≥ 0. So, for any nonnegative integer m,

HomOX
(E,E(KX −m`∞) → HomOX

(E,E(KX + (1−m)`∞))

is an isomorphism, and

Ext1OX
(E,E(KX −m`∞)) → Ext1OX

(E,E(KX + (1−m)`∞))

is injective. As a consequence, any element in HomOX
(E,E(KX + `∞)) restricts

to zero in a formal neighborhood of `∞ in X, and we conclude that

HomOX
(E,E(KX + `∞)) = 0.

�
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Corollary 2.3. Let X be a non-singular projective surface, and let `∞ be a smooth
divisor of X such that `∞ · `∞ > 0. Then for any (E,Φ) in Mr,d,n(X, `∞),

dimC Ext1OX
(E,E(−`∞))− dimC Ext2OX

(E,E(−`∞))

= 2rn + (1− r)d · d− r2(pa(X) + pa(`∞))

where d·d =
∫

X
d2, pa(X) is the arithmetic genus of X, and pa(`∞) is the arithmetic

genus of `∞.

Proof. Let (E,Φ) ∈ Mr,d,n(X, `∞) be locally free. By Proposition 2.1 (a),

dimC Ext1OX
(E,E(−`∞))− dimC Ext2OX

(E,E(−`∞)) = −χ(End(E)⊗OX(−`∞)).

Let ν ∈ H4(X; Z) be the Poincaré dual of [pt] ∈ H0(X; Z), and let e ∈ H2(X; Z)
be the Poincaré dual of [`∞] ∈ H2(X; Z). By Hirzebruch-Riemann-Roch,

χ(End(E)⊗OX(−`∞)) = deg
(
ch(End(E))ch(OX(−`∞))td(TX)

)
.

We have

ch(End(E)) = ch(E)ch(E∨)

=
(
r + d + (

d2

2
− nν)

)(
r − d + (

d2

2
− nν)

)
= r2 + (r − 1)d2 − 2rnν,

ch(OX(−`∞)) = 1− e +
e2

2
= 1− e +

k

2
ν, for k = `∞ · `∞ > 0,

hence

ch(End(E))ch(OX(−`∞)) = r2 + (−r2e) +
(
(r − 1)d2 + (

kr2

2
− 2rn)ν

)
.

We recall that

td(TX) = 1 +
1
2
c1(X) +

1
12

(c1(X)2 + c2(X)).

Let N`∞/X be the normal bundle of `∞ in X. Then∫
X

ec1(X) =
∫

`∞

(
c1(`∞) + c1(N`∞/X)

)
= 2− 2pa(`∞) + k.

Consequently,

deg (ch(End(E))ch(OX(−`∞))td(TX))

=
∫

X

( r2

12
(c1(X)2 + c2(X))− r2

2
ec1(X) + (r − 1)d2 + (

kr2

2
− 2rn)ν

)
=

r2

12

∫
X

(c1(X)2 + c2(X))− r2

2
(k + 2− 2pa(`∞)) + (r − 1)

∫
X

d2 +
kr2

2
− 2rn

= −2rn + (r − 1)
∫

X

d2 + r2(pa(X) + pa(`∞)).

�

Corollary 2.4. Let X be a non-singular projective rational surface, and let `∞ be
a divisor of X such that `∞ ∼= P1 and `∞ · `∞ > 0. Then Mr,d,n(X, `∞) is smooth
of (complex) dimension

2rn + (1− r)d · d
where d · d =

∫
X

d2.
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Example 2.5. Let X = P2, and let

`∞ = {[Z0, Z1, Z2] ∈ P2 | Z0 = 0} ∼= P1.

Then `∞ · `∞ = 1 > 0. The moduli space Mr,d,n(P2, `∞) is nonempty only if∫
`∞

d = 0, which implies d = 0. By Corollary 2.4, the moduli space Mr,0,n(P2, `∞)
is smooth of complex dimension 2rn. (See [NY1, Corollary 2.2]).

Example 2.6. Let X = Fk
def= P(OP1(−k) ⊕ OP1) be the kth Hirzebruch surface,

where k is a positive integer. Let

`0 = P(0⊕OP1) ∼= P1, `∞ = P(OP1(−k)⊕ 0) ∼= P1.

Then `0 · `0 = −k < 0 and `∞ · `∞ = k > 0.
The moduli space Mr,d,n(Fk, `∞) is nonempty only if

∫
`∞

d = 0, which implies
d = m`0 for some m ∈ Z. By Corollary 2.4, the moduli space Mr,m`0,n(Fk, `∞) is
smooth of complex dimension 2rn + (r − 1)km2.

Example 2.7. Let ` ⊂ P2 be a curve of degree 1, and let p1, ..., pk be k generic
points in P2 which are disjoint from `. Let π : Bk → P2 be the blowup of P2

at p1, . . . , pk. Let `∞ = π−1(`) ∼= P1, and let `i = π−1(pi) be the exceptional
divisors. Let e∞, e1, . . . , ek ∈ H2(Bk; Z) be the Poincaré duals of [`∞], [`1], . . . , [`k],
respectively. Then

H2(Bk; Z) = Ze∞ ⊕ Ze1 ⊕ · · ·Zek.

The moduli space Mr,d,n(Bk, `∞) is nonempty only if
∫

`∞
d = 0, which implies

d = m1e1 + · · ·+ mkek, mi ∈ Z.

By Corollary 2.4, the moduli space Mr,m1e1+···+mkek,n(Bk, `∞) is smooth of complex
dimension

2rn + (r − 1)(m2
1 + · · ·+ m2

k).

2.2. The natural bundle. In this subsection, X is a non-singular projective ra-
tional surface, and `∞ is a smooth rational curve in X such that `∞ · `∞ > 0. The
proof of the following proposition is very similar to that of Proposition 2.1.

Proposition 2.8. H0(X, E(−`∞)) = H2(X, E(−`∞)) = 0.

Let E → X×Mr,d,n(X, `∞) be the universal sheaf. Let p1 : X×Mr,d,n(X, `∞) →
X and p2 : X × Mr,d,n(X, `∞) → Mr,d,n(X, `∞) be the projections to the two
factors.

Definition 2.9. The natural bundle over Mr,d,n(X, `∞) is

V
def= (R1p2)∗(E ⊗ p∗1(OX(−`∞))).

Corollary 2.10. V is a vector bundle of rank

n− 1
2
(d · d + c1(X) · d)

over Mr,d,n(X, `∞).

Proof. We use the notation in the proof of Corollary 2.4. Let (E,Φ) ∈ Mr,d,n(X, `∞)
be locally free. The rank of V is given by −χ(E(−`∞)). By Hirzebruch-Riemann-
Roch,

χ(E(−`∞)) = deg (ch(E)ch(OX(−`∞))td(TX))
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where

ch(E) = r + d + (
d2

2
− nν)

ch(OX(−`∞)) = 1− e +
e2

2
= 1− e +

k

2
ν

ch(E)ch(OX(−`∞)) = r + (d− re) +
(d2

2
+ (

kr

2
− n)ν

)
td(TX) = 1 +

1
2
c1(X) +

1
12

(c1(X)2 + c2(X)).

Consequently,

deg (ch(E)ch(OX(−`∞))td(TX))

=
∫

X

( r

12
(c1(X)2 + c2(X)) +

1
2
(d− re)c1(X) +

d2

2
+ (

kr

2
− n)ν

)
=

r

12

∫
X

(c1(X)2 + c2(X))− r

2
(k + 2) +

1
2

∫
X

(d2 + c1(X)d) +
kr

2
− n

= −n +
1
2

∫
X

(d2 + c1(X)d) + rpa(X)

where pa(X) = 0 since X is a rational surface. �

3. Torus Action and Fixed Points

In this section, X is a non-singular projective toric surface. Therefore Tt
def= (C∗)2

acts on X. We use notation similar to that in [NY1, Section 2, 3].

3.1. Torus action on the surface. We assume that `∞ is a Tt-invariant P1 in
X, and `∞ · `∞ = k > 0. Then X0 = X \ `∞ is a non-singular, quasi-projective
toric surface. Let Γ be a graph such that the vertices of Γ are in one-to-one cor-
respondence with the Tt fixed points in X0, and two vertices are connected by an
edge if and only if the corresponding fixed points are connected by a Tt-invariant
P1. Then Γ is a chain, so #V (Γ)−#E(Γ) = 1, and

χ(X0) = #V (Γ) = χ(X)− 2,

where E(Γ) is the set of edges in Γ and V (Γ) is the set of vertices in Γ. Let pv be the
Tt fixed point in X0 which corresponds to v ∈ V (Γ), and let `e be the Tt-invariant
P1 which corresponds to e ∈ E(Γ). Any Tt-invariant divisor D in X disjoint from
`∞ is of the form

D =
∑

e∈E(Γ)

me`e
∼= H2(X0; Z)

where me ∈ Z.

3.2. Torus action on moduli spaces. Let Te be the maximal torus of GL(r, C)
consisting of diagonal matrices, and let T̃ = Tt × Te. We define an action of T̃
on Mr,d,n(X, `∞) as follows: for (t1, t2) ∈ Tt, let Ft1,t2 be the automorphism of X
defined by Ft1,t2(x) = (t1, t2) · x. Given ~e = diag(e1, . . . , er) ∈ Te, let G~e denote
the isomorphism of O⊕r

`∞
given by (s1, . . . , sr) 7→ (e1s1, . . . , ersr). For (E,Φ) ∈

Mr,d,n(X, `∞), we define

(t1, t2, ~e) · (E,Φ) =
(
(F−1

t1,t2)
∗E,Φ′

)
,
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where Φ′ is the composite of homomorphisms

(F−1
t1,t2)

∗E|`∞
(F−1

t1,t2
)∗Φ

−−−−−−−→ (F−1
t1,t2)

∗O⊕r
`∞

φt1,t2−→ O⊕r
`∞

G~e−−→ O⊕r
`∞

.

Here φt1,t2 is the homomorphism given by the action.

3.3. Torus fixed points in moduli spaces. The fixed points set Mr,d,n(X, `∞)T̃

consists of (E,Φ) = (I1(D1),Φ1)⊕ · · · ⊕ (I2(Dr),Φr) such that
(1) Iα(Dα) is a tensor product Iα⊗OX(Dα), where Dα is a Tt-invariant divisor

which does not intersect `∞, and Iα is the ideal sheaf of a 0-dimensional
subschemes Qα contained in X0.

(2) Φα is an isomorphism from (Iα)`∞ to the αth factor of O⊕r
`∞

.
(3) Iα is fixed by the action of Tt.

The support of Qα must be contained in XTt
0 , the Tt fixed points set of X0. Thus

Qα is a union of {Qv
α | v ∈ V (Γ)} where Qv

α is a subscheme supported at the Tt-
fixed point pv ∈ X0. If we take a coordinate system (x, y) around pv, then the ideal
of Qv

α is generated by monomials xiyj , So Qv
α corresponds to a Young diagram Y v

α .
Therefore the fixed point set is parametrized by 2r-tuples

(D,Y) = (D1, ~Y1, . . . , Dr, ~Yr)

where
Dα ∈

⊕
e∈E(Γ)

Z`e
∼= H2(X0; Z), ~Yα = {Y v

α | v ∈ V (Γ)},

and each Y v
α is a Young diagram. Let

|~Yα| =
∑

v∈V (Γ)

|Y v
α |.

Let d∨ ∈ H2(X; Z) be the Poincaré dual of d ∈ H2(X; Z). Then
∫

`∞
d = 0

implies

d∨ ∈
⊕

e∈E(Γ)

Z[`e].

The constraints are

(1)
∑
α

Dα = d∨,

(2)
r∑

α=1

|~Yα|+
∑
α<β

Dα ·Dβ = n.

Note that

2r
∑
α<β

Dα ·Dβ +(1−r)d∨ ·d∨ = (1−r)
∑
α

D2
α +2

∑
α<β

Dα ·Dβ = −
∑
α<β

(Dα−Dβ)2,

so (2) can be rewritten as

(3) 2r

r∑
α=1

|~Yα| −
∑
α<β

(Dα −Dβ)2 = 2rn + (1− r)d · d = dimC Mr,d,n(X, `∞).
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4. Gauge Theory Partition Functions

We refer to Appendix B for a brief review of equivariant cohomology and inte-
gration of an equivariant cohomology class over a possibly non-compact manifold.

4.1. Equivariant parameters. For i = 1, 2, let pi : BTt
∼= P∞ × P∞ be the pro-

jection to the i-th factor, and let εi = (c1)Tt
(p∗iO(1)). Then

H∗
Tt

(pt; Q) = H∗(BTt; Q) = Q[ε1, ε2].

Let ti = eεi = ch1(p∗iO(1)).
Similarly, for j = 1, . . . , r, let qj : BTe

∼= (P∞)r → P∞ be the projection to the
j-th factor, and let aj = (c1)Tt

(q∗jO(1)). Then

H∗
Te

(pt; Q) = H∗(BTe; Q) = Q[a1, . . . , ar].

Let ej = eaj = ch1(q∗jO(1)). We write ~a = (a1, . . . , ar) and ~e = (e1, . . . , er) =
(ea1 , . . . , ear ).

4.2. Multiplicative classes of the tangent and natural bundles. Recall that
a multiplicative class c is a characteristic class which satisfies c(E1⊕E2) = c(E1)c(E2).
Such a class is determined by a formal power series f(x) satisfying c(L) = f(c1(L))
for a line bundle L and c(E) = f(x1) · · · f(xr) where x1, . . . , xr are Chern roots of
E.

Let A, B be multiplicative classes associated to formal power series f(x), g(x),
respectively. Then∫

Mr,d,n(X,`∞)

AT̃ (TM)BT̃ (V ) ∈ Q[[ε1, ε2,~a]]m ⊂ Q((ε1, ε2,~a)),

where TM is the tangent bundle of Mr,d,n(X, `∞), V is defined in Definition 2.9,
and Q[[ε1, ε2,~a]]m is the localization of the ring Q[[ε1, ε2,~a]] at the maximal ideal
m generated by ε1, ε2, a1, . . . , ar. If f(x) and g(x) are polynomials, then∫

Mr,d,n(X,`∞)

AT̃ (TM)BT̃ (V ) ∈ Q[ε1, ε2,~a]m ⊂ Q(ε1, ε2,~a).

Let X0 = X \ `∞. Given

d ∈ {γ ∈ H2(X; Z) |
∫

`∞

γ = 0} ∼= H2
c (X0; Z)

let d∨ ∈ H2(X; Z) be its Poincaré dual. (Here H∗
c is the compact cohomology.)

Then

d∨ ∈
⊕

e∈E(Γ)

Z`e
∼= H2(X0; Z).
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We define

Z inst
X0,A,B,d(ε1, ε2,~a; Λ)

=
∑
n≥0

ΛdimC Mr,d,n(X,`∞)

∫
Mr,d,n(X,`∞)

AT̃ (TM)BT̃ (V )

= Λ(1−r)d·d
∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

AT̃ (TM)BT̃ (V )

=
∑

P
Dα=d∨

Λ−
P

α<β(Dα−Dβ)2
∑
~Yα

Λ
P

α |~Yα|AT̃ (T(D,Y)Mr,d,n(X, `∞))BT̃ (V(D,Y))
eT̃ (T(D,Y)Mr,d,n(X, `∞))

=
∑

P
Dα=d∨

∑
~Yα

∏
(Λ

f(xi)
xi

)
∏

g(yj) ∈ Q((ε1, ε2,~a))[[Λ]]

where xi are T̃ -equivariant Chern roots of T(D,Y)Mr,d,n(X, `∞) and yj are T̃ -
equivariant Chern roots of V(D,Y). If f(x), g(x) are polynomials then

Z inst
X0,A,B,d(ε1, ε2,~a; Λ) ∈ Q(ε1, ε2,~a)[[Λ]].

Sometimes we allow A and B to depend on extra parameters, then Z inst
X,A,B,d will

depend on extra parameters as well.
Introduce variables {Qe | e ∈ E(Γ)}. Given d ∈ H2

c (X0; Z), define

Qd =
∏

e∈E(Γ)

Q

R
`e

d
e .

We define a generating function

Z inst
X0,A,B(ε1, ε2,~a; Λ, Q) def=

∑
d∈H2

c (X0;Z)

QdZ inst
X0,A,B,d(ε1, ε2,~a; Λ)

=
∑

d∈H2
c (X0;Z)

∑
n≥0

QdΛ(1−r)d·d+2rn

∫
Mr,d,n(X,`∞)

AT̃ (TM)BT̃ (V ).

4.3. 4d pure gauge theory. Nekrasov instanton partition functions of 4d pure
gauge theory are given by

Z inst
X0,d(ε1, ε2,~a; Λ) def= Λ(1−r)d·d

∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

1,

Z inst
X0

(ε1, ε2,~a; Λ, Q) def=
∑

d∈H2
c (X0;Z)

QdZ inst
X0,d(ε1, ε2,~a; Λ).

We have

Z inst
X0,d(ε1, ε2,~a; Λ) = Z inst

X0,A=1,B=1,d(ε1, ε2,~a; Λ),

Z inst
X0

(ε1, ε2,~a; Λ, Q) = Z inst
X0,A=1,B=1(ε1, ε2,~a; Λ, Q).

We define a grading on the ring Q((ε1, ε2,~a))[[Λ]] by

deg Λ = deg ε1 = deg ε2 = deg aα = 2.

Then Z inst
X0,d(ε1, ε2,~a; Λ) ∈ Q((ε1, ε2,~a))[[Λ]] is homogeneous of degree 0.
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4.4. 4d gauge theory with Nf fundamental matter hypermultiplets. Let
Tm be the maximal torus of U(Nf ). Then H∗

Tm
(pt) ∼= Q[m1, . . . ,mNf

]. Let M be
the fundamental representation of U(Nf ), and write ~m = (m1, . . . ,mNf

). Let V be
the natural vector bundle as in Definition 2.9; it is a T̃ -equivariant vector bundle
over Mr,d,n(X, `∞).

Nekrasov instanton partition functions of 4d gauge theory with Nf fundamental
matter hypermultiplets are given by

Z inst
X0,d(ε1, ε2,~a, ~m; Λ) def= Λ(1−r)d·d

∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

(ctop)T̃×Tm
(V ⊗M)

= Λ(1−r)d·d
∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

Nf∏
f=1

(Emf
)T̃ (V )

where Et is the multiplicative class associated to f(x) = t + x, so that

Et(V ) = tk + c1(V )tk−1 + · · ·+ cn(V ), k = rankCV.

Z inst
X0

(ε1, ε2,~a, ~m; Λ, Q) def=
∑

d∈H2
c (X0;Z)

QdZ inst
X0,d(ε1, ε2,~a, ~m; Λ).

Let E~m =
∏Nf

f=1 Emf
. Then

Z inst
X0,d(ε1, ε2,~a, ~m; Λ) = Z inst

X0,A=1,B=E~m,d(ε1, ε2,~a; Λ)

Z inst
X0

(ε1, ε2,~a, ~m; Λ, Q) = Z inst
X0,A=1,B=E~m

(ε1, ε2,~a; Λ, Q).

4.5. 4d gauge theory with one adjoint matter hypermultiplet. Nekrasov
instanton partition functions of 4d gauge theory with one adjoint matter hyper-
multiplet are given by

Z inst
X0,d(ε1, ε2,~a,m; Λ) def= Λ(1−r)d·d

∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

(Em)T̃ (TM)

Z inst
X0

(ε1, ε2,~a,m; Λ, Q) def=
∑

d∈H2
c (X0;Z)

QdZ inst
X0,d(ε1, ε2,~a,m; Λ).

We have

Z inst
X0,d(ε1, ε2,~a,m; Λ) = Z inst

X0,A=Em,B=1,d(ε1, ε2,~a; Λ)

Z inst
X0

(ε1, ε2,~a,m; Λ, Q) = Z inst
X0,A=Em,B=1(ε1, ε2,~a; Λ, Q).

4.6. 5d gauge theory compactified on a circle of circumference β. Let Âβ

be the multiplicative class associated to fβ(x) =
βx/2

sinh(βx/2)
. For a complex vector

bundle E, Â1(E) = Â(E) is the Â-genus of E. The index of the Dirac operator on
a complex manifold M is given by ∫

M

Â(TM ).
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The Nekrasov partition functions of 5d gauge theory compactified on a circle of
circumference β are given by

Z inst
X0,d(ε1, ε2,~a; Λ, β) = Λ(1−r)d·d

∑
n≥0

Λ2rn

∫
Mr,d,n(X,`∞)

(Âβ)T̃ (TM),

Z
inst,(m)
X0

(ε1, ε2,~a; Λ, Q, β) =
∑

d∈H2
c (X0;Z)

QdZ inst
X0,d(ε1, ε2,~a; Λ, β).

We have

Z inst
X0,d(ε1, ε2,~a; Λ, β) = Z inst

X0,A= bAβ ,B=1,d
(ε1, ε2,~a; Λ),

Z inst
X0

(ε1, ε2,~a; Λ, Q, β) = Z inst
X0,A= bAβ ,B=1

(ε1, ε2,~a; Λ, Q).

Note that lim
β→0

fβ(x) = 1, so the partition function of 5d gauge theory compactified

on a circle of circumference β specializes to the one of 4d pure gauge theory as
β → 0, that is:

lim
β→0

Z inst
X0,d(ε1, ε2,~a; Λ, β) = Z inst

X0,d(ε1, ε2,~a; Λ),

lim
β→0

Z inst
X0

(ε1, ε2,~a; Λ, Q, β) = Z inst
X0

(ε1, ε2,~a; Λ, Q).

4.7. Hirzebruch χy genus. Let

(χy)T̃ (Mr,d,n(X, `∞)) =
N∑

p=0

(−y)p
N∑

q=0

(−1)qchT̃ Hq(Mr,d,n(X, `∞),ΛpT ∗Mr,d,n(X, `∞))

be the T̃ -equivariant Hirzebruch χy genus, where N = dimC Mr,d,n(X, `∞). In
particular,

(χ0)T̃ (Mr,d,n(X, `∞)) = χT̃ (Mr,d,n(X, `∞),O).
By Hirzebruch-Riemann-Roch,

(χy)T̃ (Mr,d,n(X, `∞)) =
N∑

p=0

(−y)p

∫
Mr,d,n(X,`∞)

tdT̃ (M)chT̃ (ΛpT ∗M)

where M = Mr,d,n(X, `∞). Define

Z inst
X0,d(ε1, ε2,~a; Λ, y) = Λ(1−r)d·d

∑
n≥0

Λ2rn(χy)T̃ (Mr,d,n(X, `∞)),

Z inst
X0

(ε1, ε2,~a; Λ, Q, y) =
∑

d∈H2
c (X0;Z)

QdZ inst
X0,d(ε1, ε2,~a; Λ, y).

Then

Z inst
X0,d(ε1, ε2,~a; Λ, y) = Z inst

X0,A=Ay,B=1,d(ε1, ε2,~a; Λ)

Z inst
X0

(ε1, ε2,~a; Λ, Q, y) = Z inst
X0,A=Ay,B=1(ε1, ε2,~a; Λ, Q),

where Ay is the multiplicative class associated to

fy(x) =
x(1− ye−x)

1− e−x
.

In particular,
f0(x) =

x

1− e−x
, f1(x) = x,
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so A0(E) = td(E) and A1(E) = e(E).

4.8. Elliptic genus. Let Ay,q be the multiplicative class associated to

y−1/2x
∏
n≥1

(1− yqn−1e−x)(1− y−1qnex)
(1− qn−1e−x)(1− qnex)

The T̃ -equivariant elliptic genus of M is given by

χT̃ (Mr,d,n(X, `∞), y, q) =
∫

Mr,d,n(X,`∞)

Ay,q(TM).

Define

Z inst
X0,d(ε1, ε2,~a; Λ, y, q) def= Z inst

X0,A=Ay,q,B=1,d(ε1, ε2,~a; Λ)

= Λ(1−r)d·d
∑
n≥0

Λ2rnχT̃ (Mr,d,n(X, `∞), y, q),

Z inst
X0

(ε1, ε2,~a; Λ, Q, y, q) def= Z inst
X0,A=Ay,q,B=1(ε1, ε2,~a; Λ, Q)

=
∑

d∈H2
c (X0,Z)

∑
n≥0

QdΛ(1−r)d·d+2rnχT̃ (Mr,d,n(X, `∞), y, q).

5. The Instanton Part

In this section, we calculate the partition functions defined in Section 4.

5.1. The tangent bundle: adjoint representation. Let (E,Φ) ∈ Mr,d,n(X, `∞)
be a fixed point of T̃ -action corresponding to (D,Y) = (D1, ~Y1, . . . , Dr, ~Yr). We
want to compute

chT̃ T(E,Φ)Mr,d,n(X, `∞) = chT̃ Ext1OX
(E,E(−`∞)) = −chT̃ Ext∗OX

(E,E(−`∞)).

We have
E = I1(D1)⊕ · · · ⊕ Ir(Dr),

so

−chT̃ Ext∗OX
(E,E(−`∞)) = −

∑
α,β

chT̃ Ext∗OX
(Iα(Dα), Iβ(Dβ − `∞))

= −
∑
α,β

eaβ−aαchTt
Ext∗OX

(Iα(Dα), Iβ(Dβ − `∞)).

Let

Lα,β(t1, t2) = −chTtExt∗OX
(OX(Dα),OX(Dβ − `∞))

= −χTt(X,OX(Dβ −Dα − `∞))

Mα,β(t1, t2) = chTtExt∗OX
(OX(Dα),OX(Dβ − `∞))

−chTtExt∗OX
(Iα(Dα), Iβ(Dβ − `∞)).

Then

(4) chT̃ T(E,Φ)Mr,d,n(X, `∞) =
r∑

α,β=1

eaβ−aα (Mα,β(t1, t2) + Lα,β(t1, t2)) .

So it remains to compute Mα,β(t1, t2) and Lα,β(t1, t2).
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5.1.1. Mα,β(t1, t2). Let χv
Dα

∈ HomOX
(Tt, C∗) be the characters of the Tt-equivariant

line bundle OX(Dα) at the Tt fixed point pv ∈ X0, and let χv
1, χ

v
2 ∈ HomOX

(Tt, C∗)
be the characters of TpvX. Then χv

Dα
, χv

1, χ
v
2 are monomials in t1, t2.

Let tt be the Lie algebra of Tt. Define weights wv
Dα

, wv
1 , wv

2 ∈ HomOX
(tt, C) = t∨t

by
ewv

Dα = χv
Dα

, ewv
1 = χv

1, ewv
2 = χv

2.

Given a partition (Young diagram) S and a box s ∈ S, let aS(s) and lS(s) be
the arm-length and leg-length of s (see e.g. [NY, Figure 2]). Given two partitions
S, T , let

(5) MS,T (t1, t2) =
∑
s∈S

t
−lT (s)
1 t

aS(s)+1
2 +

∑
t∈T

t
lS(t)+1
1 t

−aT (t)
2

(6)
NS,T (ε1, ε2)

def= MS,T (eε1 , eε2)

=
∑
s∈S

e−lT (s)ε1+(aS(s)+1)ε2 +
∑
t∈T

e(lS(t)+1)ε1−aT (t)ε2 .

The expression (5) was introduced in [FP, Equation (4.45)]. (See also [EG, Lemma
3.2] and [NY1, Theorem 2.1].)

Proposition 5.1 (vertex contribution to the tangent bundle).

Mα,β(t1, t2) =
∑

v∈V (Γ)

χv
Dβ

(t1, t2)

χv
Dα

(t1, t2)
MY v

α ,Y v
β
(χv

1(t1, t2), χ
v
2(t1, t2))

=
∑

v∈V (Γ)

e
wv

Dβ
−wv

Dα NY v
α ,Y v

β
(wv

1 , wv
2)

where wv
1 = wv

1(ε1, ε2), wv
2 = wv

2(ε1, ε2), t1 = eε1 , t2 = eε2 .

Proof.

(7)
Mα,β(t1, t2) =chTt

Ext∗OX
(OX(Dα),OX(Dβ − `∞))

− chTtExt∗OX
(Iα(Dα), Iβ(Dβ − `∞)).

We will compute the two terms on the right hand side of (7) using the method in
[MNOP1, Section 4].

Ext∗OX
(Iα(Dα), Iβ(Dβ − `∞))

=
2∑

i,j=0

(−1)i+jHi(X, Extj(Iα(Dα), Iβ(Dβ − `∞))

=
2∑

i,j=0

(−1)i+jCi(X, Extj(Iα(Dα), Iβ(Dβ − `∞))

where Ci denote the Čech cochain groups. More explicitly, let

{pa | a = 1, . . . , χ(X)}

be the Tt-fixed points in X, where χ(X) is the Euler characteristic of X. Let Ua

be the C2 coordinate chart with origin at pa, and let Uab = Ua ∩ Ub, etc.
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2∑
i,j=0

(−1)i+jCi
(
X, Extj(Iα(Dα), Iβ(Dβ − `∞))

)
=

⊕
a

2∑
j=0

(−1)jΓ
(
Ua, Extj(Iα(Dα), Iβ(Dβ − `∞))

)
−
⊕
a,b

2∑
j=0

(−1)jΓ
(
Uab, Extj(Iα(Dα), Iβ(Dβ − `∞))

)
+
⊕
a,b,c

2∑
j=0

(−1)jΓ
(
Uabc, Extj(Iα(Dα), Iβ(Dβ − `∞))

)
. . .

Note that Iα|Ua1...ai
= OX |Ua1...ai

unless i = 1 and pa1 ∈ X0, so

Ext∗OX
(OX(Dα),OX(Dβ − `∞))− Ext∗OX

(Iα(Dα), Iα(Dβ − `∞))

=
⊕

v∈V (Γ)

2∑
j=0

(−1)jΓ
(
Uv, Extj(OX(Dα),OX(Dβ))

)
−
⊕

v∈V (Γ)

2∑
j=0

(−1)jΓ
(
Uv, Extj(Iα(Dα), Iβ(Dβ))

)
where Uv is the C2 chart centered at pv.

Given a partition (Young diagram) Y and a box x ∈ Y , let a′(x) and l′(x) be
the arm-colength and leg-colength of x, respectively (see e.g. [NY, Section 3.1]).
Given a partition Y , we define

QY (s1, s2) =
∑
x∈Y

s
l′(x)
1 s

a′(x)
2 .

We have

chT̃

2∑
j=0

(−1)jΓ
(
Uv, Extj(OX(Dα),OX(Dβ))

)
−chT̃

2∑
j=0

(−1)jΓ
(
Uv, Extj(Iα(Dα), Iβ(Dβ))

)
= χv

Dβ

(
χv

Dα

)−1
(
QY v

α
(χv

1, χ
v
2)χ

v
1χ

v
2 + QY v

β
((χv

1)
−1, (χv

2)
−1)

−QY v
α
(χv

1, χ
v
2)QY v

β
((χv

1)
−1, (χv

2)
−1)(1− χv

1)(1− χv
2)
)

= χv
Dα

(χv
Dα

)−1MY v
α ,Y v

β
(χv

1, χ
v
2)

where

MS,T (t1, t2) = QS(t1, t2)t1t2 + QT (t−1
1 , t−1

2 )

−QS(t1, t2)QT (t−1
1 , t−1

2 )(1− t1)(1− t2).
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We now compare our expression of MY v
α ,Y v

β
(t1, t2) with the notation in the proof of

[NY1, Theorem 2.11]. The correspondence is

t1t2HomOX
(Vα,Wβ) = QY v

α
(t1, t2)t1t2

HomOX
(Wα, Vβ) = QY v

β
(t−1

1 , t−1
2 )

(t1 + t2 − 1− t1t2)HomOX
(Vα, Vβ) = −QY v

α
(t1, t2)QY v

β
(t−1

1 , t−1
2 )(1− t1)(1− t2).

So MS,T (t1, t2) can be rewritten as (5). �

5.1.2. Lα,β(t1, t2).

Lemma 5.2. If Dα = Dβ then Lα,β(t1, t2) = 0. In particular, Lα,α(t1, t2) = 0.

Proof.

Lα,β(t1, t2) = −χTt(X,OX(−`∞))

which can be identified with the tangent space of M1,0,0(X, `∞) at the trivial line
bundle OX . By Proposition 2.1,

H0(X,OX(−`∞)) = H2(X,OX(−`∞)) = 0.

By Corollay 2.4 (here r = 1, d = 0, n = 0), H1(X,OX(−`∞)) = 0. �

By Proposition 2.8 and Corollary 2.10, we have

Lemma 5.3. Suppose that D · `∞ = 0. Then

H0(X,OX(D − `∞)) = H2(X,OX(D − `∞)) = 0,

and

dimC H1(X,OX(D − `∞)) = −1
2
(
D2 + c1(X) ·D

)
.

In particular, for any D such that D · `∞ = 0 we have

D2 = −dimC H1(X,OX(D − `∞))− dimC H1(X,OX(−D − `∞)) ≤ 0.

Notation 5.4. Let q0,q1 be the two Tt fixed points on `∞. Let w (resp. u) ∈
Hom(T, C∗) be the tangent weight (resp. normal weight) at q0, i.e., the weight of
the Tt-action on Tq0`∞ (resp. (N`∞/X)q0). Then the tangent weight (resp. normal
weight) at q1, i.e., the weight of the Tt-action on Tq1`∞ (resp. (N`∞/X)q1), must
be given by −w (resp. u− kw), where k = `∞ · `∞ > 0.

Note that the normal weights at q0 and q1 are the restrictions of the equivariant
first Chern class (c1)Tt(OX(`∞)) to the Tt fixed points q0 and q1, respectively:

(c1)Tt
(OX(`∞))

∣∣∣
q0

= u, (c1)Tt(OX(`∞))
∣∣∣
q1

= u− kw.

Proposition 5.5 (edge contribution to the tangent bundle).

Lα,β(t1, t2) =

 ∑
v∈V (Γ)

−e
wv

Dβ
−wv

Dα

(1− e−wv
1 )(1− e−wv

2 )

+
1

(1− e−w)(1− eu)
+

1
(1− ew)(1− eu−kw)

.
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Proof. Recall that Lα,β(t1, t2) = −χTt(X,OX(Dβ −Dα − `∞)). By Grothendieck-
Riemann-Roch,

χTt
(X,OX(Dβ −Dα − `∞))

=
∫

X

tdTt
(TX)chTt

(OX(Dβ −Dα − `∞))

=

 ∑
v∈V (Γ)

e
wv

Dβ
−wv

Dα

(1− e−wv
1 )(1− e−wv

2 )

+
e−u

(1− e−w)(1− e−u)
+

e−u+kw

(1− ew)(1− e−u+kw)
.

�

Example 5.6. Let X = Fk, `0, `∞ be as in Example 2.6, with the following Tt-
action:

Tp1`0 (N`0/X)p1 Tp2`0 (N`0/X)p2 Tp3`∞ (N`∞/X)p3 Tp4`∞ (N`∞/X)p4

ε1 ε2 −ε1 ε2 + kε1 −ε1 −ε2 − kε1 ε1 −ε2

Hence, here w = ε1 and u = −ε2, and we have Dα = dα`0 for some dα ∈ Z.
Then

Lα,β(t1, t2) =
−e(dβ−dα)ε2

(1− e−ε1)(1− e−ε2)
+

−e(dβ−dα)(ε2+kε1)

(1− eε1)(1− e−ε2−kε1)

+
1

(1− e−ε1)(1− e−ε2)
+

1
(1− eε1)(1− e−ε2−kε1)

=
1− t

dβ−dα

2

(1− t−1
1 )(1− t−1

2 )
+

1− (tk1t2)dβ−dα

(1− t1)(1− t−k
1 t−1

2 )
,

and we have

Lα,β(t1, t2) =



dα−dβ−1∑
j=0

kj∑
i=0

t−i
1 t−j

2 if dα > dβ ,

dβ−dα∑
j=1

kj−1∑
i=1

ti1t
j
2 if dα < dβ ,

0 if dα = dβ .

5.2. The natural bundle: fundamental representation. Let (E,Φ) ∈ Mr,d,n(X, `∞)
be a fixed point of the T̃ -action corresponding to (D,Y) = (D1, ~Y1, . . . , Dr, ~Yr). We
want to compute

chT̃ V(E,Φ) = chT̃ H1(X, E(−`∞)) = −χT̃ (X, E(−`∞)).

We have
E = I1(D1)⊕ · · · ⊕ Ir(Dr),

so

−χT̃ (X, E(−`∞)) = −
∑

β

χT̃ (X, Iβ(Dβ − `∞)) = −
∑

β

eaβ χTt(X, Iβ(Dβ − `∞)).

Let

Lβ(t1, t2) = −χTt(X,OX(Dβ − `∞))
Mβ(t1, t2) = χTt(X,OX(Dβ − `∞))− χTt(X, Iβ(Dβ − `∞)).
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Then

(8) chT̃ V(E,Φ) =
r∑

β=1

eaβ (Mβ(t1, t2) + Lβ(t1, t2)) .

So it remains to compute Mβ(t1, t2) and Lβ(t1, t2).
Let wv

Dα
, wv

1 , wv
2 be defined as in Section 5.1.1. Given a partition S, let

(9) MS(t1, t2) =
∑
s∈S

t
−l′(s)
1 t

−a′(s)
2

(10) NS(ε1, ε2)
def= MS(eε1 , eε2) =

∑
s∈S

e−l′(s)ε1−a′(s)ε2 .

Proposition 5.7 (vertex contribution to the natural bundle).

Mβ(t1, t2) =
∑

v∈V (Γ)

χv
Dβ

(t1, t2)MY v
β
(χv

1(t1, t2), χ
v
2(t1, t2))

=
∑

v∈V (Γ)

e
wv

Dβ NY v
β
(wv

1 , wv
2).

Proof. Let Dα = 0 in Proposition 5.1. �

Proposition 5.8 (edge contribution to the natural bundle).

Lβ(t1, t2) =

 ∑
v∈V (Γ)

−e
wv

Dβ

(1− e−wv
1 )(1− e−wv

2 )

+
1

(1− e−w)(1− eu)
+

1
(1− ew)(1− eu−kw)

.

Proof. Let Dα = 0 in Proposition 5.5. �

Example 5.9. Let X = Fk, `0, `∞ be as in Example 2.6, with the Tt-action as in
Example 5.6. Then

Lβ(t1, t2) =



−dβ−1∑
j=0

kj∑
i=0

t−i
1 t−j

2 if dβ < 0,

dβ∑
j=1

kj−1∑
i=1

ti1t
j
2 if dβ > 0,

0 if dβ = 0.

5.3. Formula for instanton partition functions. Given ~Y = (Y1, . . . , Yr), where
each Yα is a Young diagram, and a multiplicative class A associated to f(x), define

(11)

m
~Y
A,α,β(ε1, ε2,~a) def=

∏
s∈Yα

f(aβ − aα − lYβ
(s)ε1 + (aYα(s) + 1)ε2)

·
∏

t∈Yβ

f(aβ − aα + (lYα(t) + 1)ε1 − aYβ
(t)ε2),

(12) m
~Y
A,β(ε1, ε2,~a) def=

∏
t∈Y β

f(aβ − l′Yβ
(t)ε1 − a′Yβ

(t)ε2).
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In particular,

(13)

m
~Y
ctop,α,β(ε1, ε2,~a) =

∏
s∈Yα

(aβ − aα − lYβ
(s)ε1 + (aYα(s) + 1)ε2)

·
∏

t∈Yβ

(aβ − aα + (lYα(t) + 1)ε1 − aYβ
(t)ε2).

Let Z inst
C2,A,B = Z inst

C2,A,B,0, and let |~Y | =
∑r

α=1 |Yα|. In this case, all Dβ = 0, so
the leg contribution is zero (see Lemma 5.2, Lemma 5.3):

Lα,β = 0, Lβ = 0.

By (4), Proposition 5.1, (8), Proposition 5.7, and above definitions (11), (12), (13),
we have:

Proposition 5.10 (instanton partition functions for C2).

Z inst
C2,A,B(ε1, ε2,~a; Λ) =

∑
~Y

Λ2r|~Y |
∏
α,β

m
~Y
A,α,β(ε1, ε2,~a)

m
~Y
ctop,α,β(ε1, ε2,~a)

r∏
β=1

m
~Y
B,β(ε1, ε2,~a)

Given ~D = (D1, . . . , Dr), where each Dα ∈ ⊕e∈E(Γ)Z`e
∼= H2(X0; Z), and a

multiplicative class A, define

(14) l
~D
A,α,β(ε1, ε2,~a) = AT̃ H1(X,OX(Dβ −Dα − `∞)).

Then l
~D
A,α,β(ε1, ε2;~a) = 1 if Dα = Dβ . In particular, l

~D
A,α,α(ε1, ε2;~a) = 1. Let

(15) l
~D
A,β(ε1, ε2,~a) = AT̃ H1(X,OX(Dβ − `∞)).

Let

| ~D|2 = −1
2

∑
α6=β

(Dα −Dβ)2 ≥ 0.

By Equations (4), (8) and Propositions 5.1, 5.5, 5.7, 5.8, 5.10, we have the
following analogue of the “master formula” in [Ne3, Section 6].

Proposition 5.11 (master formula for instanton partition functions).

Z inst
X0,A,B,d(ε1, ε2,~a; Λ) =

∑
P

Dα=d

Λ|~D|
2 ∏

α6=β

l
~D
A,α,β(ε1, ε2,~a)

l
~D
ctop,α,β(ε1, ε2,~a)

r∏
β=1

l
~D
B,β(ε1, ε2,~a)

·
∏

v∈V (Γ)

Z inst
C2,A,B(wv

1 , wv
2 ,~a + ~Dv; Λ)

where ~Dv = (wv
D1

, . . . , wv
Dr

).

Z inst
X0,A,B(ε1, ε2,~a; Λ, Q) =

∑
Dα∈H2

c (X;Z)

Q
P

α DαΛ|~D|
2 ∏

α6=β

l
~D
A,α,β(ε1, ε2,~a)

l
~D
ctop,α,β(ε1, ε2,~a)

·
r∏

β=1

l
~D
B,β(ε1, ε2,~a) ·

∏
v∈V (Γ)

Z inst
C2,A,B(wv

1 , wv
2 ,~a + ~Dv; Λ)

In the rank 1 case, Z inst
X0,A,B does not depend on ~a.
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Corollary 5.12 (rank 1, B = 1 case).

Z inst
X0,A,B=1,d(ε1, ε2; Λ) =

∏
v∈V (Γ)

Z inst
C2,A,B=1(w

v
1 , wv

2 ; Λ)

Z inst
X0,A,B=1(ε1, ε2; Λ, Q) =

∑
d∈H2

c (X;Z)

Qd
∏

v∈V (Γ)

Z inst
C2,A,B=1(w

v
1 , wv

2 ; Λ)

Note that Corollary 5.12 is applicable to the following cases: 4d pure gauge
theory (Section 4.3), 4d gauge theory with one adjoint matter hypermultiplet (Sec-
tion 4.5), 5d gauge theory compactified on a circle (Section 4.6), Hirzebruch genus
(Section 4.7), elliptic genus (Section 4.8).

5.4. Nekrasov conjecture for C2: instanton part.

Definition 5.13 (instanton prepotential for C2). Define

F inst
C2,A,B(ε1, ε2,~a; Λ) def= −ε1ε2 log Z inst

C2,A,B(ε1, ε2,~a; Λ).

There are several versions of Nekrasov conjecture which correspond to the fol-
lowing special cases:

(1) 4d pure gauge theory (see Section 4.3):

F inst
C2 (ε1, ε2,~a; Λ) = F inst

C2,A=1,B=1(ε1, ε2,~a; Λ).

(2) 4d gauge theory with Nf fundamental matter hypermultiplets (see Section
4.4):

F inst
C2 (ε1, ε2,~a, ~m; Λ) = F inst

C2,A=1,B=E~m
(ε1, ε2,~a; Λ).

(3) 4d gauge theory with one adjoint matter hypermultiplet (see Section 4.5):

F inst
C2 (ε1, ε2,~a,m; Λ) = F inst

C2,A=Em,B=1(ε1, ε2,~a,m; Λ).

(4) 5d gauge theory compactified on a circle of circumference β (see Section
4.6):

F inst
C2 (ε1, ε2,~a; Λ, β) = F inst

C2,A= bAβ ,B=1
(ε1, ε2,~a,m; Λ).

The above definitions of F inst
C2 are the same as those in [NO]; the definition in

case (1) above is the negative of the definition in [NY, NY1].
In Theorem 5.14 below, we summarize the various versions of the Nekrasov

conjecture proved by Nakajima-Yoshioka [NY1, NY2], Nekrasov-Okounkov [NO],
Braverman-Etingof [Br, BrE], Göttsche-Nakajima-Yoshioka [GNY2]. We refer to
Appendix C for the definitions of the corresponding versions of the Seiberg-Witten
prepotential in Theorem 5.14.

Theorem 5.14 (Nekrasov conjecture for C2: instanton part).

(1) 4d pure gauge theory [NO, NY1, BrE]:
(a) F inst

C2 (ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.
(b) lim

ε1,ε2→0
F inst

C2 (ε1, ε2,~a; Λ) = F inst
0 (~a, Λ), where F inst

0 (~a, Λ) is the instan-

ton part of the Seiberg-Witten prepotential of 4d pure gauge theory.
(2) 4d gauge theory with Nf fundamental matter hypermultiplets [NO]:

(a) F inst
C2 (ε1, ε2,~a, ~m; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.
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(b) lim
ε1,ε2→0

F inst
C2 (ε1, ε2,~a, ~m; Λ) = F inst

0 (~a, ~m,Λ), where F inst
0 (~a, ~m,Λ) is

the instanton part of the Seiberg-Witten prepotential of 4d gauge theory
with Nf fundamental matter hypermultiplets.

(3) 4d gauge theory with one adjoint matter hypermultiplet [NO]:
(a) F inst

C2 (ε1, ε2,~a,m; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.
(b) lim

ε1,ε2→0
F inst

C2 (ε1, ε2,~a,m; Λ) = F inst
0 (~a, m,Λ), where F inst

0 (~a, m,Λ) is

the instanton part of the Seiberg-Witten prepotential of 4d gauge theory
with one adjoint matter hypermultiplet.

(4) 5d gauge theory compactified on a circle of circumference β [NO, NY2,
GNY2]:
(a) F inst

C2 (ε1, ε2,~a; Λ, β) is analytic in ε1, ε2 near ε1 = ε2 = 0.
(b) lim

ε1,ε2→0
F inst

C2 (ε1, ε2,~a; Λ, β) = F inst
0 (~a, Λ, β), where F inst

0 (~a, Λ, β) is the

instanton part of the Seiberg-Witten prepotential of 5d gauge theory
compactified on a circle of circumference β.

5.5. Nekrasov conjecture for toric surfaces: instanton part. The expression
of the master formula (Proposition 5.11) contains two parts.

• Leg contribution:

∏
α6=β

l
~D
A,α,β(ε1, ε2,~a)

l
~D
ctop,α,β(ε1, ε2,~a)

r∏
β=1

l
~D
β (ε1, ε2,~a)

is analytic in ε1, ε2 near ε1, ε2 = 0, and

lim
ε1,ε2→0

∏
α6=β

l
~D
A,α,β(ε1, ε2,~a)

l
~D
ctop,α,β(ε1, ε2,~a)

r∏
β=1

l
~D
β (ε1, ε2,~a)

=
∏
α6=β

(
f(aβ − aα)

aβ − aα

)− 1
2 ((Dβ−Dα)2+c1(X)(Dβ−Dα)) r∏

β=1

g(aβ)−
1
2 (D2

β+c1(X)·Dβ).

• Vertex contribution:

∏
v∈V (Γ)

Z inst
C2,A,B(wv

1 , wv
2 ,~a + ~Dv; Λ) = exp

− ∑
v∈V (Γ)

F inst
C2,A,B(wv

1 , wv
2 ,~a + ~Dv; Λ)

wv
1wv

2

 .

Definition 5.15. Given ~D = (D1, . . . , Dr), where each Dα ∈
⊕

e∈E(Γ)

Z`e = H2(X0; Z),

define

F inst
X0,A,B, ~D

(ε1, ε2,~a; Λ) =
∑

v∈V (Γ)

F inst
C2,A,B(wv

1 , wv
2 ,~a + ~Dv; Λ)

wv
1wv

2

+
F inst

C2,A,B(w, u,~a; Λ)

wu
+
F inst

C2,A,B(−w, u− kw,~a; Λ)

−w(u− kw)
.

Lemma 5.16. Assume that F inst
C2,A,B(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 =

0. Then F inst
X0,A,B, ~D

(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0 for all ~D.
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Proof. F inst
C2,A,B(ε1, ε2,~a; Λ) is symmetric in ε1, ε2, so it is a function of s1 = ε1 + ε2,

s2 = ε1ε2, ~a, and Λ. For fixed ~a, Λ, let

gA,B(s1, s2, d1, . . . , dr,~a; Λ) = F inst
C2,A,B(ε1, ε2, a1 + d1, . . . , ar + dr; Λ).

Then gA,B(s1, s2, d1, . . . , dr,~a; Λ) is analytic in s1, s2, d1, . . . , dr near s1 = s2 =
d1 = · · · = dr = 0, so it has a power series expansion. Therefore
(16)

IA,B, ~D(ε1, ε2;~a, Λ)

def=
∫

X

gA,B

(
(c1)Tt

(TX), (c2)Tt
(Tx), (c1)Tt

(OX(D1)), . . . , (c1)Tt
(OX(Dr)),~a; Λ

)
is analytic in ε1, ε2 near ε1 = ε2 = 0, and
(17)

lim
ε1,ε2→0

IA,B, ~D(ε1, ε2;~a, Λ) =
∫

X

gA,B

(
c1(TX), c2(Tx), c1(OX(D1)), . . . , c1(OX(Dr)),~a; Λ

)
.

The integral IA,B, ~D(ε1, ε2,~a; Λ) is computed by the localization formula as follows:

IA,B, ~D(ε1, ε2,~a; Λ) =
∑

v∈V (Γ)

F inst
C2,A,B(wv

1 , wv
2 ,~a + ~Dv; Λ)

wv
1wv

2

+
F inst

C2,A,B(w, u,~a; Λ)

wu
+
F inst

C2,A,B(−w, u− kw,~a; Λ)

−w(u− kw)
�

Definition 5.17. Assume that F inst
C2,A,B(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 =

ε2 = 0. Define

FX0,A,B, ~D(~a; Λ) def= lim
ε1,ε2→0

F inst
X0,A,B, ~D

(ε1, ε2,~a; Λ).

Lemma 5.18. If F inst
C2,A,B(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0, then

log
(
Z inst

X0,A,B,d(ε1, ε2;~a; Λ)Z inst
C2,A,B(w, u,~a; Λ)Z inst

C2,A,B(−w, u− kw,~a; Λ)
)

is analytic in ε1, ε2 near ε1 = ε2 = 0.

Proof. We have

Z inst
X0,A,B,d(ε1, ε2;~a; Λ)Z inst

C2,A,B(w, u,~a; Λ)Z inst
C2,A,B(−w, u− kw,~a; Λ)

=
∑

P
Dα=d

Λ|~D|
2
h~D(ε1, ε2,~a; Λ)

where

h~D(ε1, ε2,~a; Λ) =
∏
α6=β

l
~D
A,α,β(ε1, ε2,~a)

l
~D
ctop,α,β(ε1, ε2,~a)

r∏
β=1

l
~D
β (ε1, ε2,~a) exp

(
−F inst

X,A,B, ~D
(ε1, ε2,~a; Λ)

)
.

h~D(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0, and

lim
ε1,ε2→0

h~D(ε1, ε2,~a; Λ) =
∏
α6=β

(
f(aβ − aα)

aβ − aα

)− 1
2 ((Dβ−Dα)2+c1(X)(Dβ−Dα))

·
r∏

β=1

g(aβ)−
1
2 (D2

β+c1(X)·Dβ) exp(−FX0,A,B, ~D(~a; Λ)).
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Therefore

log

 ∑
P

Dα=d

Λ|~D|
2
h~D(ε1, ε2,~a; Λ)


is analytic in ε1, ε2 near ε1 = ε2 = 0. �

By Lemma 5.18, the pole of log Z inst
X0,A,B,d along ε1 = ε2 = 0 is the same as that

of

− log Z inst
C2,A,B(w, u,~a; Λ)− log Z inst

C2,A,B(−w, u− kw,~a; Λ)

=
F inst

C2,A,B(w, u,~a; Λ)

wu
+
F inst

C2,A,B(−w, u− kw,~a; Λ)

−w(u− kw)
.

Definition 5.19 (logarithm of the instanton part). Define

F inst
X0,d(ε1, ε2,~a; Λ) = −u(u− kw) log Z inst

X0,d(ε1, ε2,~a; Λ).

Theorem 5.20. If F inst
C2,A,B(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0, then

(a) F inst
X0,A,B,d(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0,

(b) lim
ε1,ε2→0

F inst
X0,A,B,d(ε1, ε2,~a; Λ) = k lim

ε1,ε2→0
F inst

C2,A,B(ε1, ε2,~a; Λ).

Proof. Let

gk(w, u,~a; Λ) = −u(u− kw)

(
F inst

C2,A,B(w, u,~a; Λ)

wu
+
F inst

C2,A,B(−w, u− kw,~a; Λ)

−w(u− kw)

)
.

Note that (w, u) and (ε1, ε2) are related by a coordinate transformation in SL(2, Z).
By Lemma 5.18, it suffices to show that

(a)’ gk(w, u,~a; Λ) is analytic in w, u near w = u = 0,
(b)’ lim

w,u→0
gk(w, u,~a; Λ) = k lim

ε1,ε2→0
F inst

C2,A,B(ε1, ε2,~a,Λ).

We have

F inst
C2 (−w, u− kw,~a; Λ)−F inst

C2,A,B(w, u,~a; Λ) = wHk(w, u,~a; Λ)

where Hk(w, u,~a; Λ) is analytic in w, u near w = u = 0. So

(18) gk(w, u,~a; Λ) = kF inst
C2,A,B(w, u,~a,Λ) + uHk(w, u,~a; Λ).

(a)’ and (b)’ are are immediate consequences of (18).
�

Theorem 5.14 and Theorem 5.20 imply:

Theorem 5.21 (Nekrasov conjecture for toric surfaces: instanton part).

(1) 4d pure gauge theory:
(a) F inst

X0,d(ε1, ε2,~a; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.
(b) lim

ε1,ε2→0
F inst

X0,d(ε1, ε2,~a; Λ) = kF inst
0 (~a, Λ), where F inst

0 (~a, Λ) is the in-

stanton part of the Seiberg-Witten prepotential of 4d pure gauge the-
ory.

(2) 4d gauge theory with Nf fundamental matter hypermultiplets:
(a) F inst

X0,d(ε1, ε2,~a, ~m; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.
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(b) lim
ε1,ε2→0

F inst
X0,d(ε1, ε2,~a, ~m; Λ) = kF inst

0 (~a, ~m,Λ), where F inst
0 (~a, ~m,Λ) is

the instanton part of the Seiberg-Witten prepotential of 4d gauge theory
with Nf fundamental matter hypermultiplets.

(3) 4d gauge theory with one adjoint matter hypermultiplet:
(a) F inst

X0,d(ε1, ε2,~a,m; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.
(b) lim

ε1,ε2→0
F inst

X0,d(ε1, ε2,~a,m; Λ) = kF inst
0 (~a, m,Λ), where F inst

0 (~a, m,Λ) is

the instanton part of the Seiberg-Witten prepotential of 4d gauge theory
with one adjoint matter hypermultiplet.

(4) 5d gauge theory compactified on a circle of circumference β:
(a) F inst

X0,d(ε1, ε2,~a; Λ, β) is analytic in ε1, ε2 near ε1 = ε2 = 0.
(b) lim

ε1,ε2→0
F inst

X0,d(ε1, ε2,~a; Λ, β) = kF inst
0 (~a, Λ, β), where F inst

0 (~a, Λ, β) is

the instanton part of the Seiberg-Witten prepotential of 5d gauge theory
compactified on a circle of circumference β.

6. The Perturbative Part

In this section we prove the perturbative parts of the conjecture, of which in-
stanton counterparts were proved in Theorem 5.21. The perturbative part comes
from the difference between framed instantons on the compact toric surface X and
unframed instantons on the noncompact toric surface X0, so we must consider the
virtual tangent and natural bundles of the moduli space of unframed instantons
on X0. Evaluating the required multiplicative classes at such bundles gives rise to
infinite products which need to be regularised. Following [NO] we use zeta-function
regularization (Definition 6.3).

6.1. The virtual tangent bundle of Mr,d,n(X0). Given (E,Φ) ∈ Mr,d,n(X, `∞),
we may look at E|X0 as representing a point in the moduli space Mr,d,n(X0) of
unframed instantons on the noncompact surface X0. We have

chT̃ T vir
E|X0

Mr,d,n(X0) = −chT̃ Ext∗OX0
(E|X0 , E|X0)

=
∑
α,β

eaβ−aα

∑
v∈V (Γ)

e
wv

Dβ
−wv

Dα

(
NY v

α ,Y v
β
(wv

1 , wv
2)− 1

(1− e−wv
1 )(1− e−wv

2 )

)
=

∑
v∈Γ

∑
α,β

e
(aβ+wv

Dβ
)−(aα+wv

Dα
)
(
NY v

α ,Y v
β
(wv

1 , wv
2)− 1

(1− e−wv
1 )(1− e−wv

2 )

)
.

The perturbative part of the T̃ -equivariant Chern character of the tangent bundle
is given by

chT̃ T pert
E|X0

def= chT̃ T vir
E|X0

Mr,d,n(X0)− chT̃ T(E,Φ)Mr,d,n(X, `∞)

= −
∑
α,β

eaβ−aα

( 1
(1− e−w)(1− eu)

+
1

(1− ew)(1− eu−kw)

)

=
−
∑

α,β eaβ−aα

(1− eu)(1− eu−kw)

(
1 +

k−1∑
j=1

eu−jw
)
.
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Example 6.1. X = P2, X0 = C2.

chT̃ T pert
(E,Φ) = −

∑
α,β

eaβ−aα

( 1
(1− eε2−ε1)(1− e−ε2)

+
1

(1− eε1−ε2)(1− e−ε1)

)
=

−
∑

α,β eaβ−aα

(1− e−ε1)(1− e−ε2)
.

Let A be a multiplicative class defined by a formal power series f(x). Formally,
evaluating A on the tangent bundle produces the following perturbative part:
(19)

AT̃ (T pert
(E,Φ)) =

1∏∞
i,j=0 f(aβ − aα − iw + ju)

∏∞
i,j=0 f(aβ − aα + iw + j(u− kw))

.

The infinite product on the right hand side requires regularization.

6.2. The natural virtual bundle. Given (E,Φ) ∈ Mr,d,n(X, `∞), once again
looking at E|X0 as representing a point in Mr,d,n(X0), we have

chT̃ V vir
E|X0

= −χT̃ Ext∗OX0
E

=
∑

β

eaβ

∑
v∈V (Γ)

e
wv

Dβ

(
NY v

β
(wv

1 , wv
2)− 1

(1− e−wv
1 )(1− e−wv

2 )

)
=

∑
v∈Γ

∑
α,β

e
(aβ+wv

Dβ
)
(
NY v

β
(wv

1 , wv
2)− 1

(1− e−wv
1 )(1− e−wv

2 )

)
.

The perturbative part of the T̃ -equivariant Chern character of the natural bundle
is given by

chT̃ V pert
E|X0

def= chT̃ V vir
E|X0

− chT̃ V(E,Φ)

= −
∑
α,β

eaβ

( 1
(1− e−w)(1− eu)

+
1

(1− ew)(1− eu−kw)

)

=
−
∑

β eaβ

(1− eu)(1− eu−kw)

(
1 +

k−1∑
j=1

eu−jw
)
.

Example 6.2. X = P2, X0 = C2.

chT̃ V pert
E|X0

= −
∑

β

eaβ

( 1
(1− eε2−ε1)(1− e−ε2)

+
1

(1− eε1−ε2)(1− e−ε1)

)
=

−
∑

β eaβ

(1− e−ε1)(1− e−ε2)
.

Let B be a multiplicative class defined by a formal power series g(x). Formally,
evaluating B on the natural bundle produces the following perturbative part:

(20) BT̃ (V pert
E|X0

) =
1∏∞

i,j=0 g(aβ − iw + ju)
∏∞

i,j=0 g(aβ + iw + j(u− kw))
.

The infinite product on the right hand side requires regularization.
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6.3. Regularization. Following [NO, Appendix A], we introduce the following
functions.

Definition 6.3 (zeta-regularization).

(21) γε1,ε2(x; Λ) def=
d

ds

∣∣∣
s=0

Λ
Γ(s)

∫ ∞

0

dt

t
ts

e−tx

(eε1t − 1)(eε2t − 1)
.

(22)

γε1,ε2(x | β; Λ) def=
1

2ε1ε2

(
−β

6
(
x +

1
2
(ε1 + ε2)

)3 + x2 log(βΛ)
)

+
∞∑

n=1

1
n

e−βnx

(eβnε1 − 1)(eβnε2 − 1)
.

exp(γε1,ε2(x; Λ)) is a regularization of the infinite product
∞∏

i,j=0

Λ
x− iε1 − jε2

.

For a very nice explanation of this regularization scheme see [Ok]. The function
γε1,ε2(x; Λ) satisfy the following properties (see [NO, Appendix A]):

Fact 6.4. (1) ε1ε2γε1,ε2(x; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0;

(2) lim
ε1,ε2→0

ε1ε2γε1,ε2(x; Λ) = −1
2
x2 log

x

Λ
+

3
4
x2.

6.4. Nekrasov conjecture: perturbative part. Applying zeta-regularization to
(19) and (20), we obtain the following definitions:

Definition 6.5 (perturbative part of the partition function).

(1) 4d pure gauge theory:

Fpert
X0,A=1,B=1(ε1, ε2,~a; Λ)

def= u(u− kw) ·
(∑

α,β

(γ−w,u(aβ − aα; Λ) + γw,u−kw(aβ − aα; Λ))
)

Zpert
X0,A=1,B=1(ε1, ε2,~a; Λ) def= exp

(
Fpert

X0,A=1,B=1(ε1, ε2,~a; Λ)
−u(u− kw)

)
,

(2) 4d gauge theory with Nf fundamental matter hypermultiplets:

Fpert
X0,A=1,B=E~m

(ε1, ε2,~a; Λ)

def= u(u− kw) ·
(∑

α,β

(
γ−w,u(aβ − aα; Λ) + γw,u−kw(aβ − aα; Λ

)
−
∑
β,f

(
γ−w,u(aβ + mf ; Λ) + γw,u−kw(aβ + mf ,Λ)

))

Zpert
X0,A=1,B=E~m

(ε1, ε2,~a; Λ) def= exp

(
Fpert

X0,A=1,B=E~m
(ε1, ε2,~a; Λ)

−u(u− kw)

)
,
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(3) 4d gauge theory with one adjoint matter hypermultiplet:

Fpert
X0,A=Em,B=1(ε1, ε2,~a; Λ)

def= u(u− kw) ·
(∑

α,β

(
γ−w,u(aβ − aα; Λ)− γ−w,u(m + aβ − aα; Λ)

+γw,u−kw(aβ − aα; Λ)− γw,u−kw(m + aβ − aα; Λ
))

Zpert
X0,A=Em,B=1(ε1, ε2,~a; Λ) def= exp

(
Fpert

X0,A=Em,B=1(ε1, ε2,~a; Λ)
−u(u− kw)

)
,

(4) 5d gauge theory compactified at a circle of circumference β:

Fpert

X0,A= bAβ ,B=1
(ε1, ε2,~a; Λ)

def= u(u− kw)
∑
p,q

(γ−w,u(ap − aq;β, Λ) + γw,u−kw(ap − aq;β, Λ)

Zpert

X0,A= bAβ ,B=1
(ε1, ε2,~a; Λ) def= exp

Fpert

X0,A= bAβ ,B=1
(ε1, ε2,~a; Λ)

−u(u− kw)

 .

Example 6.6. X = P2, X0 = C2.
(1) 4d pure gauge theory:

Fpert
C2,A=1,B=1(ε1, ε2,~a; Λ) = ε1ε2

∑
α,β

γε1,ε2(aβ − aα; Λ),

(2) 4d gauge theory with Nf fundamental matter hypermultiplets:

Fpert
C2,A=1,B=E~m

(ε1, ε2,~a; Λ)

= ε1ε2

(∑
α,β

γε1,ε2(aβ − aα; Λ)−
∑
β,f

γε1,ε2(aβ + mf ; Λ)
)

,

(3) 4d gauge theory with one adjoint matter hypermultiplet:

Fpert
C2,A=Em,B=1(ε1, ε2,~a; Λ)

= ε1ε2
∑
α,β

(
γε1,ε2(aβ − aα; Λ)− γε1,ε2(m + aβ − aα; Λ

))
,

(4) 5d gauge theory compactified at a circle of circumference β:

Fpert

C2,A= bAβ ,B=1
(ε1, ε2,~a; Λ) = ε1ε2

∑
p,q

γε1,ε2(ap − aq | β; Λ).

Theorem 6.7 (Nekrasov conjecture: perturbative part).

(1) 4d pure gauge theory:

lim
ε1,ε2→0

Fpert
X0,A=1,B=1(ε1, ε2,~a; Λ) = kFpert

0 (~a, Λ)
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where

Fpert
0 (~a, Λ) =

∑
α6=β

(
−1

2
(aα − aβ)2 log

(
aα − aβ

Λ

)
+

3
4
(aα − aβ)2

)
is the perturbative part of the Seiberg-Witten prepotential of 4d pure gauge
theory.

(2) 4d gauge theory with Nf fundamental matter hypermultiplets:

lim
ε1,ε2→0

Fpert
X0,A=1,B=E~m

(ε1, ε2,~a; Λ) = kFpert
0 (~a, ~m,Λ)

where

Fpert
0 (~a, ~m,Λ) =

∑
α6=β

(
−1

2
(aα − aβ)2 log

(
aα − aβ

Λ

)
+

3
4
(aα − aβ)2

)
+
∑
β,f

(1
2
(aβ + mf )2 log

(
aβ + mf

Λ

)
− 3

4
(aβ + mf )2

)
is the perturbative part of the Seiberg-Witten prepotential of 4d gauge theory
with Nf fundamental matter hypermultiplets.

(3) 4d gauge theory with one adjoint matter hypermultiplet:

lim
ε1,ε2→0

Fpert
X0,A=Em,B=1(ε1, ε2,~a; Λ) = kFpert

0 (~a, m,Λ)

where

Fpert
0 (~a, m,Λ) =

∑
α6=β

(
−1

2
(aα − aβ)2 log

(
aα − aβ

Λ

)
+

3
4
(aα − aβ)2

+
1
2
(aα − aβ + m)2 log

(
aα − aβ + m

Λ

)
− 3

4
(aα − aβ + m)2

))
is the perturbative part of the Seiberg-Witten prepotential of 4d gauge theory
with one adjoint matter hypermultiplets.

(4) 5d gauge theory compactified at a circle of circumference β.

lim
ε1,ε2→0

Fpert

X0,A= bAβ ,B=1
(ε1, ε2,~a; Λ) = kFpert

0 (~a, Λ, β)

where

Fpert
0 (~a, Λ, β) =

∑
p6=q

(
− β

12
(ap − aq)3 +

1
2
(ap − aq)2 log(βΛ)

)
is the perturbative part of the Seiberg-Witten prepotential of 5d gauge theory
compactified on a circle.

Proof. We prove (1), (2), (3). The proof of (4) is similar.
Define

fk(u, w, x; Λ) = u(u− kw)(γ−w,u(x; Λ) + γw,u−kw(x; Λ)).

By Definition 6.5 (definition of Fpert), it suffices to show that

lim
u,w→0

fk(u, w, x; Λ) = k

(
−1

2
x2 log

x

Λ
+

3
4
x2

)
.

Let g(ε1, ε2, x; Λ) = ε1ε2γε1,ε2(x; Λ). Then by Fact 6.4,
(i) g(ε1, ε2, x; Λ) is analytic in ε1, ε2 near ε1 = ε2 = 0.



THE NEKRASOV CONJECTURE FOR TORIC SURFACES 31

(ii) lim
ε1,ε2→0

g(ε1, ε2, x; Λ) = −1
2
x2 log

x

Λ
+

3
4
x2.

By (i), we have

g(w, u− kw, x; Λ)− g(−w, u, x; Λ) = whk(u, w, x; Λ)

where hk(u, w, x; Λ) is analytic in w, u near w = u = 0. We have

fk(u, w, x; Λ) = u(u− kw)
(

g(−w, u, x; Λ)
−wu

+
g(w, u− kw; Λ)

w(u− kw)

)
= kg(−w, u, x; Λ) + uhk(u, w, x; Λ).

Therefore

lim
u,w→0

fk(u, w, x; Λ) = k lim
ε1,ε2→0

g(ε1, ε2, x; Λ) = k

(
−1

2
x2 log

x

Λ
+

3
4
x2

)
.

�

Appendix A. Kobayashi–Hitchin correspondence and existence of
instantons

In this section we recall some results relating instantons in pure gauge theory to
holomorphic bundles. The Kobayashi–Hitchin correspondence predicts an equiva-
lence between instantons and holomorphic bundles in various settings, see [LT]. For
an SU(n) bundle E over compact Kähler surface X this correspondence was proved
by Donaldson [Do1]: The moduli space of irreducible anti-self-dual connections on
E is naturally identified with the set of equivalence classes of stable holomorphic
SL(n, C) bundles which are topologically equivalent to E (see [DoK] Corollary 6.1.6
for a proof of the rank 2 case). Note that here stability is taken with respect to
the Kähler class. Under this correspondence the topological charge of the instanton
corresponds to the second Chern number of the bundle.

To obtain a Kobayashi–Hitchin correspondence over a non-compact Kähler man-
ifold (X, ω) one must impose some conditions on the behaviour of holomorphic bun-
dles at infinity. The instanton charge is obtained by integration of the curvature
of the connection over X, and the mildest constraint that guarantees finiteness of
this integral is to demand that the curvature decays as 1/r2.

For a manifold X that can be compactified to X̄ = X ∪D by adding a smooth
divisor D with positive normal bundle, Bando [Ba] defined a notion on U(r) flat-
ness and proved the following: There is a correspondence between the moduli space
of Hermitian–Einstein holomorphic vector bundles on (X, ω) whose curvature de-
cays faster than 1/r2 with trivial holonomy at infinity and the moduli space of
holomorphic vector bundles X̄ whose restriction to D are U(r)−flat.

Alternatively, one can study non-compact Kobayashi-Hitchin correspondence be-
tween instantons and framed bundles, that is, holomorphic bundles that are trivi-
alized at infinity. See Donaldson [Do2] for first non-compact instance of the corre-
spondence, namely instantons on C2; then King [Ki] for instantons on the blow-up of
C2; and Gasparim–Köppe–Majumdar [GKM] for instantons on Zk := TotOP1(−k).

We remark that these correspondences refer to classical instantons, and corre-
sponding non-compactified moduli spaces of holomorphic vector bundles having
c1 = 0 (i.e. locally trivial sheaves), whereas in the supersymmetric case the vocab-
ulary instanton moduli refers to the much more general notion of moduli of torsion
free sheaves and their compactifications. In particular, existence of instantons with
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a prescribed charge in supersymmetric gauge theories can be obtained simply by
considering non-locally free sheaves. Thus, existence results for supersymmetric
instantons contrast with existence of classical instantons, c.f. [GKM] Theorem 6.8,
which says that the minimal local charge of a nontrivial SU(2)-instanton on Zk is
k − 1.

Appendix B. Equivariant Cohomology

Let ET be a contractible space on which T = (C∗)k acts freely, and let BT =
ET/T . (For example, ET = (C∞ − {0})k and BT = (P∞)k.) Then ET → BT is
a universal principal T -bundle.

Suppose that T = (C∗)k acts on an m-dimensional complex manifold M . The
T -equivariant cohomology of M is defined to be

H∗
T (M ; Q) def= H∗(MT ; Q)

where MT = M ×T ET . There is a fibration MT → BT = ET/T with fiber M .
Let iM : M → MT be the inclusion of fiber. This induces a ring homomorphism

i∗M : H∗
T (M ; Q) → H∗(M ; Q).

In particular, when M is a point, the map

i∗pt : H∗
T (pt; Q) ∼= Q[u1, . . . , uk] → H∗(pt; Q) ∼= Q

is given by p(u1, . . . , uk) 7→ p(0, ..., 0), where u1, . . . , uk ∈ H2
T (pt; Q).

B.1. Integral. Now suppose that M is compact. Then integration along the fiber
gives Q-linear maps

(23)
∫

M

: H∗(M ; Q) → H∗(pt; Q)

(24)
∫

M

: H∗
T (M ; Q) = H∗(MT ; Q) → H∗

T (pt; Q) = H∗(BT ; Q)

such that
(i)
∫

M
α = 0 if α ∈ Hq(M ; Q), q < 2m.

(ii)
∫

M
α ∈ H0(pt) ∼= Q if α ∈ H2m(M ; Q).

(iii)
∫

M
α = 0 if α ∈ Hq

T (M ; Q), q < 2m.
(iv)

∫
M

α ∈ Hq−2m
T (pt; Q) if α ∈ Hq

T (M ; Q), q ≥ 2m. Note that Hq−2m
T (pt; Q) =

0 when q is odd, and Hq−2m
T (pt; Q) consists of homogeneous polynomials

in u1, . . . , uk of degree q/2−m when q is even.
(v) i∗pt

∫
M

α =
∫

M
i∗Mα ∈ H0(pt; Q) ∼= Q for α ∈ H∗

T (M ; Q).

B.2. Localization. Let MT denote the set of T -fixed points in M . Suppose that
each connected component of MT is a compact complex submanifold of M , so that
MT has a normal bundle N which is a complex vector bundle. Note that N might
have different ranks on different connected components of MT . T acts on MT

trivially, so (MT )T = MT ×BT and

H∗
T (MT ; Q) ∼= H∗(MT ; Q)⊗Q HT (pt; Q).

The T -equivariant Euler class eT (N) ∈ H∗
T (MT ; Q) is invertible in

H∗(MT ; Q)⊗Q Q[u1, . . . , uk]m
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where Q[u1, . . . , uk]m is the localization of the ring Q[u1, . . . , uk] at the maximal
ideal m generated by u1, ..., uk. The Atiyah-Bott localization formula says

(25)
∫

M

α =
∫

MT

i∗α

eT (N)

where α ∈ H∗
T (M ; Q), and i∗ : H∗

T (M ; Q) → H∗
T (MT ; Q) is induced by the inclusion

i : MT → M . In particular, if MT consists of isolated points p1, . . . , pN , then

(26)
∫

M

α =
N∑

j=1

i∗pj
α

eT (TpiM)

where i∗pj
: H∗

T (M ; Q) → H∗
T (pj ; Q) ∼= Q[u1, . . . , uk] is induced by the inclusion

ipj
: pj → M .
Now suppose that M is non-compact. Then (23) and (24) are not defined.

However, when MT is compact, we may define (24) by the right hand side of (25).
Now (i), (ii), (v) are irrelevant, and (iii), (iv) do not hold: given α ∈ Hq

T (M ; Q), we
have

∫
M

α = 0 if q is odd, and
∫

M
α is a rational function in u1, . . . , uk homogenous

of degree q/2−m (the degree can be negative).

Example B.1. Let Tt = (C∗)2 act on P2 by (t1, t2) · [Z0, Z1, Z2] = [Z0, t1Z1, t2Z2].
We have H∗

Tt
(pt; Q) = Q[ε1, ε2].∫

P2
1 =

1
ε1ε2

+
1

(−ε1)(−ε1 + ε2)
+

1
(−ε2)(ε1 − ε2)

= 0∫
C2

1 =
1

ε1ε2

B.3. Characteristic classes. Let c be a characteristic class for complex vector
bundles. Given a T -equivariant complex vector bundle V over M , VT = V ×T ET
is a vector bundle over MT = M ×T ET . The T -equivariant characteristic class cT

is defined by
cT (E) def= c(ET ) ∈ H∗(MT ; Q) = H∗

T (M ; Q).

Appendix C. Seiberg-Witten Prepotential

We present a brief description of the Seiberg–Witten prepotential, which is de-
scribed in detail in the seminal work [SW], where Seiberg and Witten gave an exact
solution to N = 2 supersymmetric Yang–Mills in 4 dimensions with group SU(2).
For more details see also [NY] and [D]. For gauge theory with matter see [DW]
and [BFMT]. The subject of 5d gauge theories compactified on a circle and the
corresponding Seiberg-Witten curves were introduced in [Ne1].

C.1. SU(2) case. The constraints of N = 2 SUSY imply that the quantum moduli
space is the same as the classical one as an algebraic variety. Basic quantities
are then the coordinates u of the moduli space and the electric charge a, which
in the classical theory are related simply by u = a2/2; in the quantum theory this
relation holds approximately for u →∞ by asymptotic freedom, but for finite u the
relation is much more intricate and encodes fundamental geometric and physical
information. The description of the theory via the low energy effective Lagrangian
presents measurable quantities as functions of the coordinates u of the moduli
space, and in particular the electric charge a = a(u). Moreover, Seiberg [Se] shows
that the magic of supersymmetry allows the effective Lagrangian to be expressed
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in terms of a single locally defined meromorphic function: the prepotential F0; all
remaining quantities in the theory being expressible as functions of F0 and a. An
appropriate incarnation of Montonen–Olive duality accounts for the appearance of
the dual variable

aD =
dF0

da

whose physical meaning is of the dual, that is, magnetic charge. The defining
relations giving

τ =
daD

da
, τD =

d(−a)
daD

,

which imply that the duality transformation is

τD = −τ(a)−1

and specializes to the Montonen–Olive transformation gD = g−1 when the phase
angle θ = 0, but not otherwise. The moduli space then acquires expressions for a
Kähler metric

ds2 = Im(τdadā)

with Kähler potential
∑ dF0

dai
āi, where τ is the matrix of periods

τ =
d2F0

da2
=

daD

da
.

For SU(2) the low-energy effective values of this coupling are given by τ = θ
2π + 4πi

g2

where θ is is defined only modulo 2πZ; consequently τ is defined only modulo Z
and there is a second transformation fixing a and taking τ 7→ τ +1. Since τ = daD

da ,
it follows that aD 7→ aD + a. This pair of transformations acts as multiplication on
the 2−vector (aD, a) by the matrices(

0 1
−1 0

)
and

(
1 1
0 1

)
and fractional-linearly on τ , thus generating an SL(2, Z) action. The upshot is that
what lives intrinsically over a point u in the moduli space is not the electric charge
a(u) but the unimodular lattice Za(u)+ZaD(u) of all electric and magnetic charges.
As u varies we obtain a Z2 local system V over the moduli space, which Seiberg
and Witten showed to have as simple as possible behaviour; thus having only 3
singularities at ±1 and ∞. Fixing a section of V determines the prepotential up to
a constant. From a careful analysis of the monodromies at the singular points, it
follows that the local system itself can be identified with the fiber cohomology of
the elliptic curve

Eu : y2 = (x + 1)(x− 1)(x− u).

The complexification VC can be globally trivialized in terms of a holomorphic 1-
form λ1 = dx

y and a residueless meromorphic form λ2 = xdx
y . One then chooses a

homology basis consisting of a loop γ around the branch points 1,−1 and a loop γD

around 1, u; and using such a basis, the correct geometric solution for the period is

τu =

∮
γD λ1∮
γ

λ1
.
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In this solution, a and aD appear as the periods of γ and γD of the meromorphic
1-form

λ =
ydx

x2 − 1
=

(x− u)dx

y
= λ2 − uλ1.

C.2. Higher rank case. The Seiberg-Witten solution is sometimes presented in
reverse order, starting directly with the family of curves parametrized by u as we
just described. For instance, the solution for the group SU(r) then appears as
follows. Let φ be an SU(r) gauge field. Then

det(xI − φ) = xr + U2x
r−2 − U3x

r−3 + ... + (−1)rUr,

where Uk is the elementary symmetric polynomial of the eigenvalues of φ, with
U1 = 0 because φ takes values in SU(r). These are gauge invariant operators,
so their vacuum expectation values uk = 〈Uk〉 serve as coordinates of the classical
moduli space. These are the coordinates on the ~u-space: u2, ..., ur, which generalises
the so-called u-plane in the SU(2) case.

In case of added matter, then the duality transformations take a different form,
e.g. adding Nf fundamental matter hypermultiplets, the duality transformation
becomes: (

aD

a

)
7→ R

(
aD

a

)
+

Nf∑
i=1

mi

(
nD

i

ni

)
where R ∈ Sp(2(r − 1), Z), the mi are the masses of the Nf particles added, and
ni, n

D
i are integral r×r matrices. Correspondingly, on the total space of the family

of curves, there are then Nf divisors Di along which the meromorphic differential
λ acquires a pole with constant residue mi

2π
√
−1

. Here again the charges a, aD can
be recovered as the periods of λ over γ and γD.

We now describe the Seiberg-Witten prepotential in various gauge theories with
gauge group SU(r), starting directly with the Seiberg–Witten curves. Consider the
family of hyperelliptic curves of genus r − 1 parametrized by Λ, ~u = (u2, . . . , ur),
and possibly some extra parameters, in the following cases:

(1) 4d pure gauge theory (see e.g. [NO, (4.5)]):

C~u : Λr(w +
1
w

) = P (z) = zr + u2z
r−2 + · · ·+ ur.

(2) 4d gauge theory with Nf fundamental matter hypermultiplets (see e.g. [Ne2,
(1.10)]):

C~u,~m : w +
Λ2r−Nf Q(z)

w
= P (z), Q(z) =

Nf∏
f=1

(z + mf ).

(3) 4d gauge theory with adjoint matter hypermultiplets (see e.g. [NO, (6.32)]):
in this case the SW curve is the spectral curve of the elliptic Calogero–Moser
system.

C~u,m : Detl,n(L(w)− z) = 0,

where

Ll,n(w) = δln

(
pn +

m

2π
√
−1

log(θ11(w))′
)

+
m

2π
√
−1

(1−δln)
θ11(w + ql − qn)θ′11(0)

θ11(w)θ11(ql − qn)
.

θ11(w; τ) =
∑
n∈Z

eπ
√
−1τ(n+ 1

2 )2+2π
√
−1(w+ 1

2 )(n+ 1
2 ).
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(4) 5d gauge theory compactified at a circle of circumference β (see e.g. [NO,
(7.19)]):

C~u,β : (βΛ)r(w +
1
w

) = X−r/2P (X), X = eβz.

The Seiberg-Witten differential is

dS =
1

2π
√
−1

z
dw

w
=

1
2π
√
−1

zP ′(z)dz

y
.

Let {Aα, Bβ | α, β = 2, . . . , r} be a symplectic basis of H1(C~u, Z). Define func-
tions aα, aD

β on the ~u-plane by

aα =
∮

Aα

dS, aD
α = 2π

√
−1
∮

Bβ

dS.

Then

ωp =
1

2π
√
−1

zr−pdz

y
, p = 2, . . . , r

form a basis of holomorphic differentials on C~u. The period matrix τ = (ταβ) is
given by

ταβ =
1

2π
√
−1

∂aD
α

∂aβ
.

Note that a change of symplectic basis corresponds to an element in Sp(2(r−1), Z),
the group of duality acting on the period matrix τ = (ταβ). In the SU(2) or U(2)
cases, we have r = 2, so the group of duality is Sp(2, Z) = SL(2, Z) and the SW
curve is an elliptic curve.

The Seiberg-Witten prepotential is a locally defined function satisfying

aD
α =

∂F0

∂aα
.

Therefore the Seiberg-Witten prepotential and the peroid matrix are related by

ταβ =
1

2π
√
−1

∂2F0

∂aα∂aβ
.

The full Seiberg–Witten prepotential is expressed as a sum

F0 = Fpert
0 + F inst

0

where Fpert
0 is the perturbative part and F inst

0 is the instanton part. The explicit
expressions of the perturbative parts Fpert

0 of the SW prepotentials in gauge theories
(1), (2), (3), (4) are given explicitly in (1), (2), (3), (4) of Theorem 6.7, respectively;
they have logrithm singularities along Λ = 0. The instanton part F inst

0 of the SW
prepotential is a power series in Λ2r:

F inst
0 = O(Λ2r) = f1Λ2r + f2Λ4r + · · ·+ fnΛ2nr + · · ·

The coefficient fn coming from the n-instanton moduli space is called the n-th
instanton correction to the prepotential.

For further details we refer to [DW], [GNY2], [Ne1], [NO], and [NY, Section 2].
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[GNY1] Göttsche, L.; Nakajima, H.; Yoshioka, K. Instanton counting and Donaldson invari-
ants. math.AG/0606180.
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[LT] Lübke, M.; Teleman, A. The Kobayashi–Hitchin correspondence. World Scientific Pub-
lishing Co., Inc., River Edge, NJ (1997)

[MNOP1] Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R. Gromov-Witten theory
and Donaldson-Thomas theory I. Compos. Math. 142 (2006), no. 5, 1263–1285.

[Na] Nakajima, H. Lectures on Hilbert schemes of points on surfaces, University Lecture
Series, 18, American Mathematical Society, Providence, RI, 1999.

[NY] Nakajima, H.; Yoshioka, K. Lectures on instanton counting. Algebraic structures and
moduli spaces, 31–101, CRM Proc. Lecture Notes 38 Amer. Math. Soc., Providence,
RI (2004).

[NY1] Nakajima, H.; Yoshioka, K. Instanton counting on blowup I. 4-dimensional pure gauge
theory. Invent. Math. 162 (2005), no. 2, 313–355.



38 ELIZABETH GASPARIM AND CHIU-CHU MELISSA LIU

[NY2] Nakajima, H.; Yoshioka, K. Instanton counting on blowup. II. K-theoretic partition
function. Transform. Groups 10 (2005), no. 3-4, 489–519.

[Ne1] Nekrasov, N.A. Five-dimensional gauge theories and relativistic integrable systems,
Nuclear Phys. B 531 (1998), no. 1-3, 323–344.

[Ne2] Nekrasov, N. A. Seiberg-Witten prepotential from instanton counting. Adv. Theor.
Math. Phys. 7 (2003), no. 5, 831–864.

[Ne3] Nekrasov, N. A. Localizing gauge theories. XIVth International Congress on Mathe-
matical Physics, 645–654, World Sci. Publ., Hackensack, NJ (2005).

[NO] Nekrasov, N.A.; Okounkov, A. Seiberg-Witten theory and random partitions. The unity
of mathematics, 525–596, Progr. Math. 244 Birkhäuser Boston, Boston, MA (2006).
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