
BPS COUNTING ON SINGULAR VARIETIES
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Abstract. We define new partition functions for theories with targets on toric singularities via
products of old partition functions on crepant resolutions. We compute explicit examples and

show that the new partition functions turn out to be homogeneous on MacMahon factors.
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1. Motivation for counting BPS states

BPS states are special states of supersymmetric theories, with minimal energy. BPS states have
had a crucial role in establishing various duality symmetries of Superstring theory. One of the
reasons for their pivotal role in studying dualities stems from the availability of information on exact
masses and degeneracies of these states. Degeneracy of such states in a certain supersymmetric
theory is obtained from the partition function of the theory. The degeneracies depend on the
background geometry. As the moduli of the background is varied, the number of states can jump
across a wall of marginal stability. In other words, across such a wall a BPS state may disappear,
or ‘decay’, giving rise to a different spectrum of BPS states. The original BPS state is thus stable
on one side of the wall, while the decay products are stable on the other. Indeed, when D-branes
are realized as BPS states, they are defined by the stable BPS states only. The D-brane spectrum
thus changes across walls in the moduli space. Characterising the jumps of degeneracy of BPS
states across walls in the moduli space, notwithstanding the continuity of appropriate correlation
functions, has been of immense interest recently. These studies unearthed a rich mathematical
structure within the scope of topological string theories.

A class of BPS states in topological string theories is furnished by D-branes wrapping homology
cycles of the target space. These D-branes as well as their bound states are described as objects
in the derived category of coherent sheaves of the target space or objects in the Fukaya category,
within the scope of the topological B or A models, respectively. On a Calabi–Yau target the walls
of marginal stability are detected via the alignment of the charges of the D-branes in the spectrum.
Across a wall a D-brane decays into a finite or infinite collection of branes, with the charge of the
parent brane aligning with the totality of charges of the products on the wall.

Generous support of the Royal Society under Grant 2008/R2 for joint research projects between the UK and

India made this collaboration possible.
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Now, the partition function of the A-model generates the Gromov–Witten invariants of Calabi–
Yau threefolds from the world-sheet perspective. From the target space perspective, they count
the Gopakumar–Vafa invariants. The GW invariants count holomorphic curves on the threefold,
whereas the GV invariants count BPS states of spinning black holes in 5 dimensions obtained from
M2-branes in M-theory on the Calabi–Yau threefold [AOVY]. Considering the topological A-model
on the target

R3 ×X × S1 ,

where X denotes the Calabi–Yau space without four-cycles and S1 designates the compact Eu-
clidean temporal direction, the partition function also counts the number of D0- and D2-brane
bound states on a single D6-brane wrapped on X. (In principle, M5-branes wrapping four-cycles
in X can form bound states with M2-branes; these complications do not arise in the absence of four-
cycles in X [AOVY].) The partition function is the generating function of the Donaldson–Thomas
invariants. Thus the study of the degeneracy of states relates the GW, GV and DT invariants.

As discussed above, the D-brane spectrum changes from one chamber to another on the Calabi–
Yau space, partitioned by the walls of marginal stability. Thus, the computation of degeneracy
depends on the stability criteria of D-branes on a Calabi–Yau space. For the case of a singular
variety, instead of considering different stability conditions, which pertain to the desingularization
of the variety, we consider all crepant resolutions at once. We construct new partition functions
for the singular space in terms of known partition functions of the crepant resolutions. This yields
a definition of the partition function of the topological A-model and thence a counting of DT
invariants for the singular Calabi–Yau variety.

2. New partition function and results

Suppose we have a singular Calabi–Yau space X and a finite collection of crepant resolutions
Xt → X for index t ∈ T , |T | <∞. Assume further that we have a partition function Zold(Y ;Q, . . . )
defined for a smooth Calabi–Yau space Y , where Q = (Q1, Q2, . . . ) are formal variables correspond-
ing to a basis of H2(Y ;Z). Finally, we suppose that H2(Xs;Z) ∼= H2(Xt;Z) for all s, t ∈ T .

We define a new partition function Znew for X as follows. Firstly, we identify the formal variables
Q among all the resolutions. That is, we set

Qsi = Qti =: Qi for all s, t ∈ T .

Secondly, we define

Znew(X;Q, . . . ) :=
∏
t∈T

Zold(Xt;Qt, . . . ) .

The new partition function captures the information from all possible resolutions of X, and thus
can be regarded as a property of the singular space X itself. We consider only full resolutions,
partial resolutions produce messier computations with no apparent extra information.

We can apply this approach to a number of different partition functions. In this paper, we
consider the ones of curve-counting type such as the Gromov–Witten and the Donaldson–Thomas
partition functions, and we obtain the following results:

Theorem. Let X be a toric Calabi–Yau threefold without compact 4-cycles and without contractible
curves, and let Z(Y ; q,Q) be any partition function of curve-counting type (def 5.6). Then the total
partition function

Ztot(X; q,Q) :=
∏
Y→X

Z(Y ; q,Q) ,

where the product ranges over all crepant resolutions of X, is homogeneous (def 5.2) of degree

d =
(m2 −m+ n2 − n− 2mn)(m+ n− 2)!

m!n!

where m and n are the exponents appearing in the equation xy − zmun = 0 that defines X.

We perform the curve-counting when the Calabi–Yau threefold is allowed to have contractible
curves as well (Corollary 5.9) in particular obtaining a counting of BPS states via the topological
string partition function (Corollary 5.11).
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3. The mathematics of curve counting

3.1. Gromov–Witten theory.

Definition 3.1. By a curve we mean a reduced scheme C of pure dimension one. The genus of
C is g(C) := h1(C; OC).

Corollary 3.2. A connected curve C of genus 0 is a tree of rational curves.

Definition 3.3. An n-pointed curve
(
C;P1, . . . , Pn

)
is called prestable if every point of C is either

smooth or a node singularity and the points P1, . . . , Pn are smooth. A map f : C → X is called
stable if

(
C;P1, . . . , Pn

)
is prestable and there are at least three marked or singular points on each

contracted component.

Remark 3.4. Stability entails that the map f has no first-order infinitesimal deformations.

We write Mg,n(X,β) for the collection of maps from stable, n-pointed curves of genus g into
X for which

[f(C)] = f∗[C] = β ∈ H2(X; Z) .

Behrend and Fantechi [BF1] showed that this has a coarse moduli (Deligne–Mumford) stack,
Vistoly [V] studied the intersection theory on Mg,n(X,β) and constructed a perfect obstruction
theory, and [BF1] showed that there exists a virtual fundamental class of virtual dimension

vd = (1− g)(dimX − 3)−KX(β) + n .

(We assume that X does in fact have a canonical class KX ∈ H2(X; Z), e.g. if X is smooth.)
Consequently, dimension of the classes [ Mg,n(X,β)]vir is independent of β when KX = 0, that is,

when X is Calabi–Yau. Moreover, the unpointed moduli M0,0(X,β) has virtual dimension zero

for all g if dimX = 3, so on a three-dimensional Calabi–Yau, M0,0(X,β) really “counts curves”.

Definition 3.5. Assume that g(C) = 0. Let

evi : M0,n(X,β)→ X ,
(
f : (C;P1, . . . , Pn)→ X

)
7→ f(Pi)

be the ith evaluation map. Assume that
∑n
i=1 deg(γi) = vd for some γi ∈ H∗( M0,n(X,β)). Then

the genus-0 Gromov–Witten invariants are

〈γ1, . . . , γn〉β := ev∗1(γ1) ∪ · · · ∪ ev∗n(γn) ∩ [ M0,n(X,β)]vir .

For higher genera, the definition of the Gromov–Witten invariants requires the introduction of
additional data, called descendent fields. Since we require only genus 0 for our purposes, we refer
the interested reader to [MNOP2, § 2].

When dimX = 3, X is Calabi–Yau (i.e. KX = 0), arbitrary genus g and n = 0, we have the
unmarked Gromov–Witten invariants

Ng,β(X) :=

∫
[Mg,0(X,β)]vir

1 .

Example 3.6. If X = {pt.}, then Mg,n(X,β) = Mg,n, the moduli of n-pointed curves.

Example 3.7. For X = P1, the genus-0 Gromov–Witten invariants are just the Hurwitz numbers.

The (unmarked) Gromov–Witten invariants are usually assembled into an unreduced and a
reduced generating function, respectively

F (X;u, v) =
∑
β

∑
g≥0

Ng,β(X)u2g−2vβ , and

F ′(X;u, v) =
∑
β 6=0

∑
g≥0

Ng,β(X)u2g−2vβ ,

where v = (v1, . . . , vr) is an appropriate vector that can be paired with the r generators of
H2(X; Z). The unreduced and reduced Gromov–Witten partition functions are, respectively,

ZGW(X;u, v) = expF (X;u, v) = 1 +
∑
β

ZGW(X;u)βv
β , and

Z ′GW(X;u, v) = expF ′(X;u, v) = 1 +
∑
β 6=0

Z ′GW(X;u)βv
β ,
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where the last expressions define the homogeneous terms Z(X;u)β and Z ′(X;u)β of degree β.

3.2. Donaldson–Thomas theory. An ideal subsheaf of OX is a sheaf I such that I(U) is an
ideal in OX(U) for each open set U ⊆ X. Alternatively, it is a torsion-free rank-1 sheaf with trivial
determinant. It follows that I∨∨ ∼= OX . Thus the evaluation map determines a quotient

(3.1) 0 −→ I ev−−→ I∨∨ ∼= OX −→ OX
/
IOX = ı∗OY −→ 0 ,

where Y ⊆ X is the support of the quotient and OY := (OX
/
IOX)|Y is the structure sheaf

of the corresponding subspace. Let [Y ] ∈ H2(X; Z) denote the cycle class determined by the
1-dimensional components of Y with their intrinsic multiplicities. We denote by

In(X,β)

the Hilbert scheme of ideal sheaves I ⊂ OX for which the quotient Y in (3.1) has dimension at
most 1, χ(OY ) = n and [Y ] = β ∈ H2(X; Z).

The work of Donaldson and Thomas was to show that In(X,β) has a canonical perfect ob-
struction theory (originally when X is smooth, projective and −KX has non-zero sections) and
a virtual fundamental class [In(X,β)]vir of virtual dimension

∫
β
c1(TX) = −KX(β). If X is a

smooth, projective Calabi–Yau threefold, then the virtual dimension is zero, and we write

Ñn,β(X) :=

∫
[In(X,β)]vir

1

for the “number” of such ideal sheaves. We assemble these numbers into an (unreduced) partition
function,

ZDT(X; q, v) =
∑
β

∑
n∈Z

Ñn,β(X)qnvβ =
∑
β

ZDT(X; q)βv
β ,

where again the last expression defines the unreduced terms of degree β. The degree-0 term

ZDT(X; q)0 =
∑
n≥0

Ñn,0(X)qn

is of special importance: We define the reduced DT partition function as

Z ′DT(X; q, v) = ZDT(X; q, v)
/
ZDT(X; q)0 = 1 +

∑
β 6=0

Z ′DT(X; q)βv
β ,

once again defining the reduced terms Z ′DT(X; q)β of degree β implicitly.

3.3. The MNOP Conjecture. For a smooth Calabi–Yau threefold X, the following relation was
conjectured by MNOP:

Z ′GW(X;u, v) = Z ′DT(X;−eiu, v) .

It was proved in [BF2] and [L] in the compact case, and in the the case when X is a toric (and hence
necessarily non-compact) Calabi–Yau threefold in [MNOP1, MNOP2]. Therefore, Gromov–Witten
and Donaldson–Thomas theories provide equivalent information for Calabi–Yau threefolds.

We will pursue to illustrate our new approach using the Donaldson–Thomas partition function,
for which toric computational techniques have been developed by [LLLZ]. The spaces which we
consider are those toric threefolds X whose crepant resolutions have no compact 4-cycles, which
implies that X is either a quotient of C3 or a quotient of the conifold.

4. Generalised conifolds

Given a pair of nonnegative integers n,m we consider the toric varieties

Cm,n :=
{
xy − zmwn = 0

}
⊂ C4 = SpecC[x, y, z, w] .

There are two cases: ı) When n > m = 0, these are quotients of C3 by the action of Z/n given by
(a, b, c) 7→ (εa, ε−1b, c), where εn = 1. Note that these spaces have 1-dimensional singularities, as
C0,n

∼= Kn × C, where Kn is the Kleinian surface singularity {xy − zn = 0}.
ıı) When n ≥ m ≥ 1. The space C1,1 is the conifold given by {xy − zw = 0} ⊂ C4. It is

the standard example of an isolated 3-dimensional hypersurface singularity that is not a quotient
singularity. All other spaces Cm,n are quotients of the conifold.

The toric fan of Cm,n is generated by a single 3-dimensional cone with ray generators, say,
(0, 0, 1), (0, 1, 1), (n, 0, 1) and (m, 1, 1). As all of the ray generators lie in the {z = 1}-plane, the
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the canonical divisor is trivial and the varieties are Calabi–Yau. When we refer to the toric diagram,
we will henceforth only ever use the intersection with this plane, and the diagram describing Cm,n
is the strip with vertices (0, 0), (0, 1), (n, 0) and (1,m):

If we seek to desingularise these varieties, we find that blowing up the singular locus in general
results in a non-Calabi–Yau variety. This can be easily seen by constructing the star subdivision
of the singular subcone and observing that the new ray generator will not lie in the {z = 1}-
hyperplane. However, small resolutions are crepant and therefore result in a smooth Calabi–Yau
variety. We obtain these resolutions explicitly by constructing a lattice triangulation of the strip:

The internal edges in the triangulation of the strip correspond to 2-dimensional cones in the
toric fan of the resolved threefold; they describe the irreducible components of the exceptional
curve. Observe that the resolution has no compact 4-cycles. Its second homology is generated by
the components of the exceptional curve. Each prime component of the exceptional set is a smooth
rational curve.

We want to consider all possible crepant resolutions of Cm,n, which correspond to all maximal
lattice triangulations of the strip (i.e. triangulations in which each triangle has area 1

2 ). We will
abuse notation and use Cm,n to refer to the strip as well as to the variety which it defines. We
collect some combinatorial properties of these triangulations.

Proposition 4.1.

(1) There are
(
m+n
m

)
triangulations of Cm,n.

(2) Each triangulation has m+ n− 1 interior edges and m+ n triangles.
(3) The Euler characteristic of any crepant resolution of Cm,n is m+ n.

Proof. Statement (2) is obvious by induction, starting at m = 0, n = 1 and by observing that
each triangulation of Cm,n can be built from C0,1 by successively adding triangles. Statement (3)
follows from (2) since if X is any crepant resolution of Cm,n, then χ(X) = h0(X;Z) + h2(X;Z),
since there are no compact 4- or 6-cycles.

Statement (1) is illuminating to prove in two ways. First, we can proceed by induction. Suppose
we pass from m to m+1. A triangulation of Cm+1,n falls into one of two categories: Either there is
a triangle (m, 1)—(m+1, 1)—(n, 0), and its complement is Cm,n, or there is a triangle (m+1, 1)—
(n−1, 0)—(n, 0), and the complement is Cm+1,n−1. Induction gives the familiar recursion relation

for the binomial coefficients,
(
m+n+1
m+1

)
=
(
m+n
m

)
+
(
m+n
m+1

)
.

The second method is to construct an enumeration of the triangulations directly. We claim that
a triangulation corresponds one-to-one to a choice of m triangles out of m + n triangles, giving
the desired count. The correspondence is as follows: There is an obvious ordering of the triangles
“from left to right”, starting with the unique triangle t1 that meets the edge (0, 0)—(0, 1) and
moving right across the unique other non-horizontal edge and arriving at the unique triangle tm+n

that meets the edge (m, 1)—(n, 0). Each triangle has a unique horizontal edge. which is either
at the top or at the bottom of the strip, corresponding to vertical coordinate 1 or 0, respectively.
Precisely m triangles are at the top, and specifying which m triangles are at the top fixes the
triangulation uniquely. �

4.1. Enumerating triangulations. We will use the method of enumeration that was constructed
in the proof of proposition 4.1. That is, we denote each triangulation of Cm,n by a subset T ⊂
{1, 2, . . . ,m + n} with |T | = m, where the triangles tk, k ∈ T , are at the top of the strip and
{t1, . . . , tm+n} denotes the set of all triangles.

Example 4.2. Let m = 2 and n = 4. Here are some examples of triangulations of C2,4 given by
subsets of size 2 of

{
1, . . . , 6

}
.
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{
1, 2

} 1 2

3 4 5 6

{
1, 3

} 1

2

3

4 5 6

{
3, 6

}
1 2

3

4 5

6

We also require a labelling of the interior edges. We define

ei := ti ∩ ti+1 , i = 1, . . . ,m+ n− 1.

In a given triangulation T ⊂ {1, . . . ,m+ n}, there are two possibilities for each edge ei: either ti
and ti+1 are both at the top or both at the bottom, in which case either i, i+ 1 ∈ T or i, i+ 1 6∈ T ;
or else one triangle is at the top and the other at the bottom, in which case either i ∈ T, i+ 1 6∈ T
or i 6∈ T, i + 1 ∈ T . In the former case we say that ei is of type “+” and colour the curve green
in the toric diagram, in the latter case it is of type “−” and depict it in red. We let τ(ei) = ±1
according to whether ei is of type “+” or “−”.

4.2. Computing triangulations. Let us describe briefly how we verified the results with com-
puter programs.

The actual triangulation was carried out using the software TOPCOM [TOP]. We used the
function points2allfinetriangs, which triangulates a strip using triangles of equal, minimal
area and produces a list of all possible triangulations.

Some details: In TOPCOM, points in a point set are given in homogeneous coordinates, so
for our purposes, the vertex (i, j) corresponds to the point [i,j,1]. We label the m + n + 2
vertices sequentially, assigning the range 0, . . . ,m to the vertices v0 := [0,0,1], v1 := [1,0,1],
. . . , vm := [m,0,1], and the range m + 1, . . . ,m + n + 1 to vm+1 := [0,1,1], vm+2 := [1,1,1]

. . . , vm+n+1 := [n,1,1]. The output of TOPCOM consists of lists of triplets (va, vb, vc) of vertices
giving the triangulation of the strip. Our task therefore was to extract the internal edges from this
list and determine whether they are of type “+” or “−”.

The natural ordering “from left to right” of the non-horizontal edges is precisely the the lexi-
cographic ordering of either the top or the bottom vertices (i, j). When the edges are ordered in
this fashion, the kth edge, corresponding to vertex (ik, jk), is of type “+” if jk−1 = jk = jk+1 and
ik−1 + 1 = ik = ik+1 − 1; otherwise it is of type “−”. (We are grateful to Jesus Martinez-Garcia
for writing the program to compile this information.)

From this data we can quickly construct the partition function of any particular resolution of
Cm,n given by a specific triangulation.

5. Curve counting on singular varieties

For any complex threefold (X,OX), the Hilbert scheme of ideal sheaves I ⊂ OX with fixed
Euler characteristic χ(I) = k and support [supp(I)] = β ∈ H2(X;Z), written Ik(X,β), has a
perfect obstruction theory of virtual dimension

∫
β
c1(TX) = −KX(β), see [DT]. When KX = 0,

the numbers

Nk,β(X) :=

∫
[Ik(X,β)]vir

1

are the Donaldson–Thomas (DT) invariants of X. We let Q = (Q1, . . . , Qh) be a set of symbols
corresponding to generators of H2(X;Z). The DT invariants are collected into the Donaldson–
Thomas partition function

Z(X; q,Q) :=

∞∑
k=0

∑
β∈H2(X;Z)

Nk,β(X) qk Qβ ,

where Qβ = Qβ1

1 · · ·Q
βh

h . We single out the degree-0 contributions,

Z0(X; q) :=

∞∑
k=0

Nk,0(X) qk ,
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and we define the reduced DT partition function as

Z ′(X; q,Q) := Z(X; q,Q)/Z0(X; q) .

The MacMahon function. In the sequel, we will require again and again the (generalised) MacMa-
hon function

M(x, q) :=

∞∏
k=1

1

(1− xqk)k
= exp

∞∑
i=0

∞∑
j=0

i

j
xj qij .

For any smooth, toric, threefold X, we have KX(0) = 0 and so we can define the degree-0
partition function Z0(X; q). It is known [MNOP1] that

Z0(X;−q) = M(1, q)

∫
X
c3(TX ⊗KX) ,

and in particular if X is Calabi–Yau, then

Z0(X;−q) = M(1, q)χ(X) ,

where χ(X) denotes the Euler characteristic of X. The connection is that the MacMahon function
counts box partitions, and degree-0 toric ideal sheaves are given by monomial ideals, which can
indeed be arranged like “boxes stacked into a corner”.

5.1. DT invariants of generalized conifolds. If X is a crepant resolution of Cm,n, it is a
smooth, toric, Calabi–Yau threefold, and the DT partition function can be computed combi-
natorially by the topological vertex method (see [LLLZ, IK]). We will always take the curves
corresponding to the edges ei as our preferred basis for H2(X;Z), that is,

β =

m+n−1∑
i=1

βi[ei] ∈ H2(X;Z) .

Furthermore, we have χ(X) = m+ n.
To describe Z ′(X; q,Q), we need to establish some notation. We call a set P = {i, i+ 1, . . . , j}

an edge path if 1 ≤ i ≤ j ≤ m + n − 1, and we think of it as a sequence of consecutive interior
edges of the triangulation T of Cm,n corresponding to the resolution X. An edge path P has length
|P | := j − i+ 1. There are m+ n− 1 edge paths of length 1, m+ n− 2 of length 2, and so forth,
and 1 of length m+n− 1, so in total there are

(
m+n

2

)
edge paths. An edge path is literally a path

along the compact edges of the dual tropical curve of the triangulation T .
If P = {i, i+1, . . . , j} is an edge path, we write QP = Qij = Qi · · ·Qj , so for example Q22 = Q2

and Q35 = Q3Q4Q5. We define

f(P, q,Q) = M(QP , q)
τ(ei)τ(ei+1)···τ(ej) .

That is, f(P, q,Q) is either the MacMahon function or its reciprocal, depending on whether P
contains an even or an odd number of edges of type “−”. The whole partition function of X is
simply the product of such terms f over all edge paths:

Z ′(X;−q,Q) =
∏
P

f(P, q,Q) =

m+n−1∏
i=1

m+n−1∏
j=i

∞∏
k=1

(
1−

(∏j
a=iQa

)
qk
)−k∏j

a=i τ(ea)
.

Since this partition function is determined entirely by the triangulation, i.e. by a subset T ⊂
{1, 2, . . . ,m + n}, |T | = m, we write Z ′T (Cm,n; q,QT ) for the partition function, where QT =
(QT1 , . . . , Q

T
m+n−1). We now consider the collection of all possible triangulations of Cm,n.

Definition 5.1. We define the total partition function:

Z ′tot(Cm,n;−q,Q) :=
∏

T⊂{1,...,m+n}
|T |=m

Z ′T (Cm,n;−q,Q)

We can think of the total partition function as being a property of the singular variety itself.
We make the following ad-hoc definition:
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Definition 5.2. A partition function Z(q,Q) of variables Q = (Q1, Q2, . . . ) is called homogeneous
if

Z(q,Q) =
(∏

M
(∏

i∈AQi, q
))d

,

where the first product is over an arbitrary finite collection of index sets A ⊂ {1, 2, . . . }. The
exponent d is called the degree of Z.

Example 5.3. We may start out with the case of n = 1 and m = 1, in which case the strip is just
a single square admitting two triangulations:

and

Thus the partition function reads Z ′tot(C1,1;−q,Q) = M(Q1, q)
−2, for which the result is obviously

true. Triangulations on smaller strips can be extended to triangulations of bigger strips. Consider
the following two ways to pass from a triangulation of Cm,n to a triangulation of Cm,n+1. In the
first case, the right-most edge of Cm,n turns into an internal edge of Cm,n+1 of “+” type, such as
in this example:

−→

The exponent of M(Q1,m+n−1, q) coming from this triangulation of Cm,n is the same as the expo-
nent of M(Q1,m+n, q) for the corresponding triangulation of Cm,n+1. Hence, there is a correspon-
dence between such kinds of triangulations of the two strips, maintaining equality of exponents of
the MacMahon factors. In the second case the rightmost edge of Cm,n turns into an internal edge
of Cm,n+1 of “−” type, such as in this figure:

−→

Now notice that in the triangulation on the right-hand side we would have contributing factors of
M(Q1, q)

−1 and M(Q1Q2, q)
+1, which would appear to give rise to different exponents. However,

since every parallelogram has 2 diagonals, there is always a second triangulation obtained by
flopping the diagonal on rightmost parallelogram of the previous figure, and we obtain and extra
triangulation of Cm,n+1 (this one not coming from a triangulation of Cm,n) which in the example
in question gives:

and this triangulation contributes with factors of Q+1
1 and (Q1Q2)−1, canceling out the seemingly

unbalanced contributions from the previous one.

Proposition 5.4. For 0 < m ≤ n, Z ′tot(Cm,n;−q,Q) is homogeneous of degree d, where

(5.1) d =
(m2 −m+ n2 − n− 2mn)(m+ n− 2)!

m!n!
,

namely,

Z ′tot(Cm,n;−q,Q) =
∏

1≤i≤j≤m+n−1

M(Qij , q)
d ,

Proof. The proposition consists of two separate parts, and so does the proof. The first statement is
that each MacMahon factor M(Qij , q) appears with the same power in the total partition function.

We have to show that each MacMahon factor M(Qij , q) appears with the same power in the
total partition function and compute the value of this exponent. The problem is entirely combi-
natorial. In terms of finite sets, it takes the following form: Let us simply write N for the finite
set {1, 2, . . . , N}. For any subset T ⊂ N and any fixed, ordered subset S = {s1, . . . , sk} ⊂ N , we
define the characteristic sequence

χT (S) :=
(
χT (s1), . . . , χT (sk)

)
,

where χT : N → {0, 1} = Z/2Z is the characteristic function of T . (It will be opportune to think
of the two-element set as the additive group of order 2.)
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In our application, we will take S to be a “contiguous” subset of the form {i, i + 1, . . . , j}
corresponding to some edge path. For such a subset, we define the difference sequence as

∆T (S) :=
(
χT (s1)− χT (s2), χT (s2)− χT (s3), . . . , χT (sk−1)− χT (sk)

)
,

and we define the T -signature of S as

σT (S) :=
∏

b∈∆T (S)

(−1)b ∈ {+1,−1} .

(Since we are only interested in the T -signature, we may consider the elements of ∆T (S) to take
values in Z/2Z and identify +1 and −1.) Finally, the exponent of M(Qij , q) in the total partition
function of Cm,n is the m-signature of the set S = {i, i+ 1, . . . , j}, defined as

σ(S) =
∑

T⊂N : |T |=m

σT (S) ,

where N = m+ n.
So much for the setup. The first observation is that any action π ∈ ΣN that preserves the

contiguous ordering of the elements of S does not alter the value of the total signature: σ(πS) =
σ(S). Therefore, we may assume without loss of generality that S is {1, 2, . . . , k}.

Next, any subset T ⊂ N with |T | = m is of the form T = U t T ′, where U ⊂ {1, 2, . . . , k} with
|U | = i and T ′ ⊂ {k + 1, k + 2, . . . , N} with |T ′| = m − i for i = 0, 1, . . . , k. Now observe that

all we need to compute the m-signature is ∆U (S), or rather σU (S) = σT (S). Since there are
(
N
m

)
subsets in total, we have

σ(S) =
∣∣{T : σT (S) = +1

}∣∣− ∣∣{T : σT (S) = −1
}∣∣ =

(
N

m

)
− 2

∣∣{T : σT (S) = −1
}∣∣ .

The combinatorics of this are easily determined: Subsets T = U t T ′ for which σU (S) = −1 are

those for which ∆U (S) has an odd number of 1s, and there are 2
(
k−2
i−1

)
of those, where i = |U |.

Summing over all i we find:

σ(S) =

(
N

m

)
− 4

k−1∑
i=1

(
k − 2

i− 1

)(
N − k
m− i

)
.

The last factor accounts for all the possible subsets T ′. The sum evaluates to
(
N−2
m−1

)
, and we obtain:

σ(S) =

(
N

m

)
− 4

(
N − 2

m− 1

)
=

(N2 −N + 4m2 − 4mN)(N − 2)!

m!(N −m)!

This is true for any contiguous set S = {i, i + 1, . . . , j}, and the result follows by substituting
N = m+ n.

The second statement is the value of the exponent. Since the exponent is the same for each factor
M(Qij , q) by the first part, we may compute it by just computing the exponent of M(Q1, q), i.e.
the factor corresponding to the edge path {1}. Each triangulation T contributes either an exponent
+1 or −1. The exponent is +1 if 1, 2 ∈ T or 1, 2 6∈ T , and it is −1 if 1 ∈ T , 2 6∈ T or if 1 6∈ T ,
2 ∈ T . The number of +1s is thus the sum of the number of triangulations of Cm−2,n and Cm,n−2,
and the number of −1s is twice the number of triangulations of Cm−1,n−1. �

Remark 5.5. We excluded the case n > m = 0 from the proposition, since C0,n only admits one
unique triangulation, and all interior edges are of type “+”. Writing X for the resolution, we have

Z ′(X;−q,Q) =
∏

1≤i≤j≤n−1

M(Qij , q) and Z(X;−q,Q) = M(1, q)n Z ′(X;−q,Q) .

We have indeed d = 1 in Equation 5.1 whenever m = 0.

Results. All toric Calabi–Yau threefolds are non-compact and described completely by their toric
fan, whose ray generators all lie in the {z = 1}-plane, and the intersection of the toric fan with
this plane is a compact polytope. The condition that the threefold contains no compact 4-cycles
is equivalent to the condition that the polytope contains no interior lattice points. The only
polytopes that satisfy this condition are the strips Cm,n, so the only toric Calabi–Yau threefolds
without compact 4-cycles are either quotients of C3 by Z/nZ, whose polytope is C0,n, or quotients
of the conifold {xy−zw = 0} by Z/mZ×Z/nZ, whose polytope is Cm,n; or one of their resolutions.
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Definition 5.6. Let us call a partition function defined for a Calabi–Yau manifold Y to be of
curve-counting type if it can be expressed in terms of the Donaldson–Thomas partition function
up to some factor depending only on the Euler characteristic of Y .

We have thus proved:

Theorem 5.7. Let X be a toric Calabi–Yau threefold without compact 4-cycles and without con-
tractible curves, and let Z(Y ; q,Q) be any partition function of curve-counting type. Then the total
partition function

Ztot(X; q,Q) :=
∏
Y→X

Z(Y ; q,Q) ,

where the product ranges over all crepant resolutions of X, is homogeneous, and its degree is given
by Proposition 5.4.

Note that the absence of compact 4-cycles implies that there are no interior points in the planar
polytope that represents the toric CY threefold, from which it follows that this polytope is a strip,
hence the threefold is one of our generalised conifolds.

For a general toric Calabi–Yau threefold X without compact 4-cycle, we can use this theorem
to factor the partition function into homogeneous factors. The toric diagram ∆ of X is a strip of
shape Cm,n with an arbitrary number of internal edges filled in, for example:

0 1 2 3 4

0 1 2 3

Let us partition the integers m,n according to the already filled-in interior edges, that is,

(m,n) =

P∑
k=1

(mk, nk) = (m1 +m2 + · · ·+mP , n1 + n2 + · · ·+ nP ) .

In the example above, we have (m,n) = (4, 3), and the single interior edge corresponds to the
partition (4, 3) = (1 + 3, 2 + 1). It is clear that the number of maximal triangulations of this shape
is

P∏
k=1

(
mk + nk
nk

)
,

where each factor counts the number of triangulations of the embedded subdiagram Cmk,nk
=: Ck.

If we restrict our attention to some fixed subdiagram Ck, then entire collection of triangulations
of ∆ contains many triangulations with the same restriction to Ck. It is clear that for any fixed
triangulation of Ck, there are bk triangulations of ∆ that restrict to the given triangulation, where

bk =
∏
j 6=k

(
mj + nj
nj

)
.

We extend Definition 5.1 the straightforward way:

Definition 5.8. If X is a Calabi–Yau threefold without compact 4-cycles such that the convex
hull of its toric diagram is Cm,n (that is, there exists a birational map X → Cm,n), we define the
total partition function to be

Z ′tot(X;−q,Q) :=
∏
T

Z ′T (Cm,n,−q,Q) .

Here the term in the product of the right-hand side is the same as in Definition 5.1, but time the
product is taken only over those triangulations T which correspond to resolutions of X.

Now Theorem 5.7 implies the following:

Corollary 5.9. If X is a toric Calabi–Yau threefold without compact 4-cycles and (m,n), P and
bk are as above, then the total partition function of X factors as follows:

Z ′tot(X;−q,Q) = Z ′′(−q,Q)

P∏
k=1

Z ′tot(Cmk,nk
;−q,Q)bk .
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The factors in the product on the right are homogeneous as per Theorem 5.7, and the function Z ′′

only contains factors M(Qij , q) for which the edge path corresponding to Qij crosses one of the
interior edges of the toric diagram of X.

Example 5.10. In the above example with (m,n) = (4, 3) = (1 + 3, 2 + 1), the two homogeneous
factors are Z ′tot(C1,2;−q,Q)3 and Z ′tot(C3,1;−q,Q)2, and the inhomogeneous factor contains only
terms M(Qij , q) with i ≤ 3 ≤ j, because the third edge is already fixed in the diagram.

5.2. BPS counting and relation to black holes. Here is one application to BPS state counting.
The topological string partition function of X is

Ztop(X; q,Q) = M(1, q)χ(X)/2Z ′(X;−q,Q) ,

so it is a partition function of curve-counting type.

Corollary 5.11. Writing XT for the resolution of Cm,n corresponding to the triangulation T , we
have ∏

T

Ztop(XT ; q,Q) = M(1, q)(
m+n
m )m+n

2

∏
1≤i≤j≤m+n−1

M(Qij , q)
(m2−m+n2−n−2mn)(m+n−2)!

m!n! .

Proof. This follows immediately from the fact that χ(XT ) = m + n for all T and that there are(
m+n
m

)
triangulations. �

We finish up with a comment on the relation between BPS counting and black holes. The
counting of BPS states is of great interest to string theory and supergravity, and it has been shown
in several situations (see e.g. [S1, IS]) that the counting of BPS states agrees with the counting
of extremal black holes. In some cases it has even been shown [S2] that the string partition
function agrees with the black hole partition function; Sen concludes from this agreement a precise
equivalence between the black hole entropy and the statistical entropy associated with an ensemble
of BPS states.
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