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ABSTRACT. We prove that adjoint orbits of semisimple Lie algebras have the structure
of symplectic Lefschetz fibrations. These provide a large class of examples of LG models
whose superpotential has only nondegenerate critical points. We describe the topology
of the regular and singular fibres, in particular calculating their middle Betti numbers.

CONTENTS

1. Introduction 1
1.1. Our first motivation: Homological Mirror Symmetry 1
1.2. Our second motivation: existence of SLFs in higher dimensions 2
1.3. Main results 2
2. Lefschetz Fibrations on adjoint orbits 2
2.1. Main Theorem 4
2.2. Singular points of the potential as an orbit of the Weyl group 4
2.3. Diffeomorphisms among regular fibres 5
2.4. Symplectic form 10
2.5. Fukaya–Seidel cateogory for the sl (2,C) orbit 11
3. Topology of the regular fibres 15
4. Topology of the singular fibres 17
References 18

1. INTRODUCTION

A Landau–Ginzburg model (LG) is a nonlinear sigma model on a space X together
with a superpotential W . The superpotential W : X →C is required to be holomorphic,
so LG models are only interesting when X is noncompact. See for instance [GSh] or [KP]
for some examples of LG models with nontrivial X . Here we contribute with a large class
of LG models where X is an adjoint orbit of a semisimple Lie algebra, and the superpo-
tential provides X with the structure of a Symplectic Lefschetz Fibrations (SLF). These
are particularly manageable examples of LG models because for an SLF the superpoten-
tial has only of nondegenerate critical points.

1.1. Our first motivation: Homological Mirror Symmetry. Given any complex variety
the celebrated Homological Mirror Symmetry conjecture of Kontsevich [Ko] predicts
the existence of a symplectic mirror partner such that the category of A-branes (La-
grangian thimbles) D(Lag (W )) is equivalent to the derived category of B-branes (co-
herent sheaves) Db(Coh(Y )). Here D(Lag (W )) is the Fukaya–Seidel category of vanish-
ing cycles for a LG model W : X → C and Db(Coh(Y )) is the bounded derived category
of coherent sheaves on Y . An exciting part of the conjecture is that the A-side is sym-
plectic geometry whereas the B-side is algebraic, therefore the conjecture provides a
dictionary between the two types of geometry – algebraic and symplectic – the mirror
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map interchanging vanishing cycles on the symplectic side with coherent sheaves on
the algebraic side.

The HMS conjecture generated an enormous amount of interest in both the Physics
and the Mathematics community. Mathematical proofs appeared in several cases: el-
liptic curves by Polishschuk–Zaslow [PZ], curves of genus two by Seidel [Se], curves of
higher genus by Efimov [E], punctured spheres by Abouzaid–Auroux–Efimov–Katzarkov–
Orlov [AAEKO], weighted projective planes and del-Pezzo surfaces by Auroux–Katzarkov–
Orlov [AKO1], [AKO2], quadrics and intersection of two quadrics by Smith [S], the four
torus by Abouzaid–Smith [AbS], Calabi–Yau hypersurfaces in projective space by Sheri-
dan [Sh], toric varieties by Abouzaid [Ab], and Abelian varieties by Fukaya [F]. Never-
theless, the HMS conjecture remains open in most cases.

Clarke [Cl] showed that one can state a generalized version of the HMS conjecture
as a duality between LG models. He also shows that this correspondence generalizes
those of Batyrev–Borisov Berglung–Hübsch, Givental, and Hori–Vafa. Thus, LG models
are basic tools to the study of the HMS conjecture.

1.2. Our second motivation: existence of SLFs in higher dimensions. The literature
about SLFs in 4 real dimensions is vast. In fact, in 4D a celebrated result of Donald-
son [Do] proves that after blowing up finitely many points, every symplectic manifold
admits a Lefschetz fibration. On the opposite direction, the existence of a topological
Lefschetz fibration on a 4 dimensional symplectic manifold guaranties the existence
of an SLF whenever the fibres have genus at least 2, see [GoS]. Moreover, Amorós–
Bogomolov–Katzarkov–Pantev proved existence SLFs in 4D with arbitrary fundamental
group [ABKP].

In general, it is possible to construct Lefschetz fibrations starting up with a Lefschetz
pencil and then blowing up its base locus (see [Se], [Go]). However, in such cases one
needs to fix the indefiniteness of the symplectic form over the exceptional locus by glue-
ing in a correction, and this makes it rather difficult to explicitly find vanishing cycles
and thimbles. Direct constructions of Lefschetz fibrations in higher dimensions are by
and large lacking in the literature.

Our goal here is to investigate the existence of SLFs on complex n-folds with n ≥ 3.
Our construction does not make use of Lefschetz pencils, we construct our symplectic
Lefschetz fibrations directly taking the superpotentials provided by heigh functions that
comes naturally from Lie theory.

1.3. Main results. We prove that adjoint orbits of semisimple Lie algebras have the
structure of symplectic Lefschetz fibrations. We then describe the topology of the fi-
bres, in particular calculating their middle Betti numbers. Our main results are:

Theorem 2.2 Let h be the Cartan subalgebra of a complex semisimple Lie algebra. Given
H0 ∈ h and H ∈ hR with H a regular element. The height function fH : O (H0) → C de-
fined by

fH (x) = 〈H , x〉 x ∈O (H0)

has a finite number (= |W |/|WH0 |) of isolated singularities and gives O (H0) the structure
of a symplectic Lefschetz fibration.

The precise meaning of this statement is explained in section 2.1, and comments
about our choice of fH are given in remark 2.3. In example 2.5 we describe the category
of Lagrangian vanishing cycles for an adjoint orbit of the lie algebra sl(2,C). In section 3
we describe the topology of the regular fibre, and in section 4 we describe the singular
fibre, obtaining:
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Corollary 3.5 The homology of a regular level L (ξ) coincides with that of FH0 \ W · H0.
In particular, the middle Betti number of L (ξ) equals k − 1, where k is the number of
singularities of the fibration fH (and equals the number of elements in the orbit W ·H0).

Corollary 4.2 The homology of a singular level L (w H0), w ∈W coincides with that of

FH0 \ {uH0 ∈W ·H0 : u 6= w}.

In particular, the middle Betti number of L (w H0) equals k−2, where k is the number of
singularities of the fibration fH .

Acknowledgments We thank Ron Donagi, Ludmil Katzarkov and Tony Pantev for en-
lightening discussions.

2. LEFSCHETZ FIBRATIONS ON ADJOINT ORBITS

Let g be a complex semisimple Lie algebra and G a connected Lie group with Lie
algebra g (for instance G could be Aut0 (g), the connected component of the identity of
the automorphism group of G).

The Cartan–Killing form of g, 〈X ,Y 〉 = tr(ad(X )ad(Y )) ∈C, is symmetric and nonde-
generate. Moreover, 〈·, ·〉 is invariant by the adjoint representation, that is

〈[X ,Y ], Z 〉 =−〈Y , [X , Z ]〉 X ,Y , Z ∈ g.

Fix a Cartan subalgebra h ⊂ g and a compact real form u of g. Associated to these
subalgebras there are the subgroups T = 〈exph〉 = exph and U = 〈expu〉 = expu. Denote
by τ the conjugation associated to u, defined by τ (X ) = X if X ∈ u and τ (Y ) = −Y if
Y ∈ iu. Hence if Z = X + i Y ∈ g with X ,Y ∈ u then τ (X + i Y ) = X − i Y . In this case, the
sesquilinear form Hτ : g×g→C defined by

(2.1) Hτ (X ,Y ) =−〈X ,τY 〉
is a Hermitian form on g (see [SM, lemma 12.17]).

A root of h is a linear functional α : h→C, α 6= 0, such that the space of roots

gα = {X ∈ g : ∀H ∈ h, [H , X ] =α (H) X } 6= {0}.

The set of all roots is denoted byΠ. The decomposition g in eigenspaces of ad(H), H ∈ h,
is given by

g= h⊕ ∑
α∈Π

gα.

An element H ∈ h is regular if α (H) 6= 0 for all α ∈Π.
The restriction of the Cartan–Killing form to h is nondegenerate so we can define,

for each α ∈ Π, Hα ∈ h by α (·) = 〈Hα, ·〉. The real subspace generated by Hα, α ∈ Π, is
denoted by hR. In the canonical construction of u we have hR ⊂ iu.

The Weyl group W is given by W = NorG (h)/CentG (h) (normaliser modulo centraliser)
or, equivalently, the group generated by reflexions with respect to the roots. W is finite.

The adjoint representation of G in g is denoted by Ad
(
g
)

X , g ∈G and X ∈ g, or simply
by g ·X . An adjoint orbit is given by

O (X ) =G ·X = {g ·X ∈ g : g ∈G}.

Such an orbit can be identified with the quotient space G/CentG (X ) where CentG (X ) =
{g ∈ G : g · X = X } is the centraliser of X in G . If H ∈ h is regular then CentG (H) = T =
exph. The tangent space TxO (X ) to the orbit O (X ) at x is given by

TxO (X ) = ℑad(x) = {[x, A] : A ∈ g}

= {[A, x] : A ∈ g}

since [A, x] = d
d t

(
e tad(A)x

)
|t=0 and e tad(A) = Ad

(
e t A

)
.

Note that, because g is a complex Lie algebra, the tangent spaces TxO (X ) to O (X ) are
complex subspaces of g, since if [A, x] is a tangent vector then i [A, x] = [i A, x] is also a
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tangent vector. This implies that each adjoint orbit O (X ) is a complex manifold, as it is
endowed with an almost complex structure (multiplication by i in each tangent space)
which is integrable, simply because this almost complex structure is the restriction of a
complex structure on g (the Nijenhuis tensor vanishes).

Example 2.1. When g= sl (n,C) the data just described is:

(1) 〈·, ·〉 is a (constant) multiple of the form tr(X Y );
(2) A canonical choice of h is the subalgebra of diagonal matrices;
(3) with this choice of h the roots are the linear functionals αi j

(
diag{a1, . . . , an}

) =
ai − a j , i 6= j , with gαi j the subspace generated by the basis element given by
the matrix Ei j (with 1 in the i , j entry and zeros elsewhere);

(4) u = su (n), the (real) algebra of anti-Hermitian matrices. In this case τ (Z ) =
−Z

T
, Z ∈ sl (n,C) and the associated Hermitian form is a multiple of Hτ (X ,Y ) =

tr
(

X Y
T
)
;

(5) H ∈ h is regular if and only if its eigenvalues are all distinct;
(6) W is the permutation group of n elements, which acts upon h by permuting its

diagonal entries.
(7) If H ∈ h then O (H) is the set of diagonalizable matrices that have the same

eigenvalues as H .

2.1. Main Theorem. The Lefschetz fibration on an adjoint orbit is the following:

Theorem 2.2. Given H0 ∈ h and H ∈ hR with H a regular element. Then, the “height
function ” fH : O (H0) →C defined by

fH (x) = 〈H , x〉 x ∈O (H0)

has a finite number (= |W |/|WH0 |) of isolated singularities and defines a symplectic Lef-
schetz fibration, that is, the following properties hold:

(1) The singularities are nondegenerate (Hessian non degenerate).
(2) If c1,c2 ∈ C are regular values then the level manifolds f −1

H (c1) and f −1
H (c2) are

diffeomorphic.
(3) There exists a symplectic formΩ in O (H0) such that if c ∈C is a regular value then

the level manifold f −1
H (c) is symplectic, that is, the restriction of Ω to f −1

H (c) is a
symplectic (nondegenerate) form.

(4) If c ∈ C is a singular value, then f −1
H (c) contains affine subspaces (contained in

O (H0)). These subspaces are symplectic with respect to the form Ω from the pre-
vious item.

The proof will be carried out in several steps.

Remark 2.3. The height function fH defined by an element H ∈ hR is extensively used in
the study of the geometry of flag manifolds. This is due to the fact that it is a Morse–Bott
function in general, which is Morse if H is regular. These height functions make the link
between Morse theory and the algebraic theory of Bruhat decompositions. This is be-
cause the gradient grad fH of fH , with respect to the so called Borel metric is precisely
the vector field H̃ induced by H on a flag manifold (see Duistermaat–Kolk–Varadarajan
[DKV]). The unstable manifolds of grad fH = H̃ are the components of the Bruhat de-
composition if H is regular. For applications of these height functions to the geome-
try of flag manifolds see Kocherlakota [Kc], regarding the Morse homology, and the ex-
tensive literature on the “convexity theorems” started with Kostant [K], Atiyah [At] and
Guillemin–Sternberg [GS].
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2.2. Singular points of the potential as an orbit of the Weyl group. First of all, if A ∈ g
and x ∈ O (H0) then [A, x] is a vector tangent to O (H0) at x and the differential of fH is
given by

(2.2)
(
d fH

)
x ([A, x]) = d

d t
〈H ,e tad(A)x〉|t=0 = 〈H , [A, x]〉 = 〈[x, H ], A〉.

From this expression it follows that fH is a holomorphic function with respect to the
complex structure of O (H0). Indeed,(

d fH
)

x (i [A, x]) = (
d fH

)
x ([i A, x]) = 〈[x, H ], i A〉 = i 〈[x, H ], A〉 = i

(
d fH

)
x ([A, x]) .

Being a holomorphic function, the rank of fH at x ∈ O (H0) (regarded as a map taking
values in R2 ≈C) is either 0 or 2, given that if

(
d fH

)
x ([A, x]) 6= 0 then i

(
d fH

)
x ([A, x]) 6= 0

and these two derivatives generate R2 ≈ C. In particular, this means that x ∈ O (H0) is a
singular point of fH if and only if

(
d fH

)
x = 0.

Therefore, by expression (2.2) for the differential of fH , it follows that x is a singularity,
that is,

(
d fH

)
x ([A, x]) = 0 for all A ∈ g if and only if [x, H ] = 0. This allows us to identify

the singular points.

Proposition 2.4. x is a singular point for fH if and only if x ∈O (H0)∩h=W ·H0, where
W is the Weyl group. (At this point the hypothesis that H is regular is used.)

Proof. As observed, x is a singularity if and only if [x, H ] = 0. But, as H is regular its
centralizer is the Cartan subalgebra h itself. It follows that the singularity set is O (H0)∩h.
This set is exactly the orbit of H0 by the action of W . �

Since W is finite we obtain the following corollary.

Corollary 2.5. The set of singularities of fH is finite.

To obtain the Hessian at a singularity x0 ∈ O (H0)∩h, take B ∈ g. Then the second
derivative at x ∈O (H0) calculated at [A, x] and [B , x] is given by

d

d t
〈[e tad(B)x, H ], A〉|t=0 = 〈[B , x], H ], A〉

= 〈[[B , H ], x], A〉+〈[B , [x, H ]], A〉.
In particular, if x0 is a singularity then [x0, H ] = 0 and the second derivative becomes

(2.3) 〈[[B , H ], x0], A〉 = 〈[x0, [H ,B ]], A〉.
Proposition 2.6. The second term of (2.3) defines a symmetric bilinear form whose re-
striction to the tangent space Tx0O (H0) at x0 ∈ h is nondegenerate.

Proof. The tangent space Tx0O (H0) is the image of ad(x0), which equals

im(ad(x0)) =
∑

α(x0)6=0
gα

given that ad(x0) is diagonalizable and its eigenvalues are 0 and α (x0), α ∈ Π. From
this we observe that the restriction of ad(x0) to its image is an invertible linear map.
Therefore, the tangent vectors [x0, A] with A varying inside im(ad(x0)) cover the entire
tangent space Tx0O (H0). This means that in the second derivative (2.3) we can restrict
A and B to im(ad(x0)).

Now, on one hand the restriction of ad(H) to im(ad(x0)) is also invertible since H
is regular. On the other hand, the restriction of the Cartan–Killing form to im(ad(x0))
is nondegenerate, since if α (x0) 6= 0 then (−α) (x0) 6= 0 and given Y ∈ gα there exists
Z ∈ g−α such that 〈Y , Z 〉 6= 0.

The upshot is that the expression 〈[x0, [H ,B ]], A〉 with A,B ∈ im(ad(x0)) takes the
form B (Pu, v) where B is a nondegenerate bilinear form and P is an invertible linear
transformation on a vector space. Such a bilinear form is always nondegenerate. �

This proposition concludes the proof of item (1) of theorem 2.2.
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2.3. Diffeomorphisms among regular fibres. To show that the inverse images of two
regular points are diffeomorphic, we construct vector fields transversal to the fibres in
such a way that for a given fibre the flows of these vectors fields are well defined up to
a certain time in all the fibre (as O (H0) is not compact, it is not to be expected that the
vector fields be complete). The diffeomorphism is obtained form such flows.

The transversal vector fields that will play the appropriate roles are defined by

(2.4) Z (x) = 1

‖[x, H ]‖2 [x, [τx, H ]]

where τ : g → g is conjugation with respect to the real compact form u and ‖·‖ is the
norm associated to the Hermitian form H . Here are a few observations about this vec-
tor field:

(1) Z is well defined if [x, H ] 6= 0, that is, if x ∉ h. Therefore, Z can be regarded as a
vector field on g \h, which restricts to a vector field on the set of regular points
of O (H0) \h.

(2) If x ∈ O (H0) \h then Z (x) is tangent to O (H0) since [x, [τx, H ]] ∈ im(ad(x)) is
tangent to O (H0) at x. Therefore, Z does indeed restrict to a vector field in
O (H0) \h.

(3) Since, by hypothesis, for H ∈ hR, τH = −H it follows that [τx, H ] = −[τx,τH ] =
−τ[x, H ].

(4) The differential of fH at x ∈O (H0) \h satisfies(
d fH

)
x ([x, [τx, H ]]) = −〈H , [x, [τx, H ]]〉 = 〈H , [x,τ[x, H ]]〉

= −〈[x, H ],τ[x, H ]]〉
= H ([x, H ], [x, H ]) = ‖[x, H ]‖2

which is > 0 if [x, H ] 6= 0. Therefore, d fH (Z (x)) = 1. This guarantees that Z is
transversal to the level surfaces of fH .

(5) The vector field i Z is also transversal. This happens because the tangent spaces
to a level surface f −1

H (c), for a regular value c ∈ C, are complex subspaces of g.
Therefore if Z (x) ∉ Tx f −1

H (c) then i Z (x) ∉ Tx f −1
H (c).

Lemma 2.7. Let Z : g\h→ g be defined by

Z (x) = 1

‖[x, H ]‖2 [x, [τx, H ]]

where ‖·‖ is the norm corresponding to the Hermitian form H (·, ·). Then, there exists
M > 0 such that for all x ∈ g\h the following inequality holds

‖d Zx‖ ≤ 2M (‖ad(H)‖+M ‖H‖)
‖x‖

‖[x, H ]‖2 .

The constant M > 0 depends only on the bracket of g.

Proof. It suffices to show that the differential of Z , d Zx is bounded as a function of x. If
v ∈ g then

d Zx (v) =−2ℜH ([v, H ], [x, H ])

‖[x, H ]‖4 [x, [τx, H ]]+ 1

‖[x, H ]‖2 ([v, [τx, H ]]+ [x, [τv, H ]]) .

To estimate ‖d Zx (v)‖ (and thus also ‖d Zx‖) we use the following inequalities:

(1) |ℜH ([v, H ], [x, H ]) | ≤ |H ([v, H ], [x, H ]) | ≤ ‖[x, H ]‖·‖ad(H)‖·‖v‖, by the Cauchy–
Schwarz inequality, where ‖ad(H)‖ is the operator norm of ad(H).

(2) The bracket of a finite dimensional Lie algebra is a continuous bilinear map,
hence there exists M > 0 such that for all X ,Y ∈ g we have ‖[X ,Y ]‖ ≤ M ‖X ‖ ·
‖Y ‖. Consequently,
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(a) ‖[x, [τx, H ]]‖ ≤ M ‖[τx, H ]‖ · ‖x‖. Since τ is an isometry of the Hermitian
form H and H ∈ hR, ‖[τx, H ]‖ = ‖−τ[x, H ]‖ = ‖[x, H ]‖. Therefore, the sec-
ond term of this inequality equals M ‖[x, H ]‖ ·‖x‖.

(b) ‖[v, [τx, H ]]‖ e ‖[x, [τv, H ]]‖ are bounded above by M 2 ‖H‖ ·‖x‖ ·‖v‖.

An application of the triangle inequality to ‖d Zx (v)‖, combined with the previous
expression, gives us

‖d Zx (v)‖ ≤ 2

(
M ‖ad(H)‖ ·‖x‖

‖[x, H ]‖2 + M 2 ‖H‖ ·‖x‖
‖[x, H ]‖2

)
‖v‖ ,

from which the claimed inequality follows. �

Now we find estimates for ‖x‖
‖[x,H ]‖2 over open subsets of O (H0) which will allow us to

show that, over these open sets, ‖d Zx‖ is bounded and, consequently, that Z is Lips-
chitz.

Lemma 2.8. There exists C > 0 such that if x ∈O (H0) then ‖x‖ >C .

Proof. The point is that in a semisimple Lie algebra an adjoint orbit O (X ) is closed if
ad(X ) is diagonalizable. In particular, O (H0) is closed and does not contain the origin.
Therefore, O (H0) does not approach 0 and it follows that infx∈O (H0) ‖x‖ > 0. �

The following lemma from linear algebra will be used to estimate ‖d Zx‖.

Lemma 2.9. Let Dn and Xn be sequences of complex matrices such that

(1) Each Dn is diagonalizable and limDn =∞.
(2) lim Xn = 0.

Then there exists a subsequence nk with λnk ∈ C such that limk λnk = ∞ e λnk is an
eigenvalue of Mnk = Dnk +Xnk .

Proof. Denote by an the diagonal entry of Dn that has the largest absolute value among
all diagonal entries of Dn . Then lim an =∞, since limDn =∞. Consider the sequence

Mn = 1

an
(Dn +Xn) .

We have lim 1
an

Xn = 0. On the other hand, 1
an

Dn is a bounded sequence, therefore there

exists a subsequence nk such that limk
1

ank
Dnk = D . Consequently, limk

1
ank

Mnk = D .

We may refine the subsequence nk such that the entry ank of Dnk occurs always at the
same position for all k. Thus D is a diagonal matrix with 1 as an eigenvalue, since there
exists a diagonal entry such that for all k, the entry of 1

ank
Dnk in this position is 1.

The limit limk
1

ank
Mnk = D guarantees that for all ε> 0 there exists k0 ∈N such that if

k ≥ k0 then 1
ank

Mnk has an eigenvalue µnk with |µnk −1| < ε. Setting ε = 1/2 we obtain

|µnk | > 1/2. Therefore, λnk = ankµnk is an eigenvalue of Mnk and limλnk =∞. �

The following lemma shows that the adjoint orbit O (H0) is not asymptotic to the
Cartan subalgebra h.

Lemma 2.10. Let O (H0)∩h be the finite set of singularities of fH in O (H0). Given ε > 0
denote by Oε the set of x ∈O (H0) which are at a distance greater than ε of the singularities:

Oε = {x ∈O (H0) : ∀y ∈O (H0)∩h,
∥∥x − y

∥∥> ε}.

Denote by p : g → ∑
α∈Πgα the projection given by the decomposition g = h⊕∑

α∈Πgα.
Then we have the following properties:

(1) Given ε> 0 there exists δ> 0 such that, if x ∈Oε, then
∥∥p (x)

∥∥> δ.
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(2) There exists a constant Γε > 0 such that if x ∈Oε then∥∥x −p (x)
∥∥∥∥p (x)

∥∥ < Γε.

Proof. Both properties are proved by contradiction.

(1) Assume the statement is false. Then there exist ε > 0 and a sequence yn ∈
Oε such that limn p

(
yn

) = 0. Set yn = Hn +Yn , with Hn ∈ h and Yn = p
(
yn

)
.

The contradiction hypothesis guarantees that lim yn =∞, since otherwise there
would exist a subsequence ynk with limk ynk = y . This implies that lim Hnk = y
given that limYnk = 0. Since h and O (H0) are closed, it follows that y ∈O (H0)∩
h, contradicting the fact that yn does not approach O (H0)∩h. Consequently,
lim Hn =∞.

We may now apply lemma 2.9 by taking Dn = ad(Hn) and Xn = ad(Yn). This
shows that there exists a subsequence nk such that ad

(
ynk

) = Dnk + Xnk has
an eigenvalue λnk with limλnk = ∞. But this is a contradiction because yn ∈
O (H0) and, therefore, the eigenvalues of ad

(
yn

)
are the same as the eigenvalues

of ad(H0).
(2) Assume the statement is false. Then there exists a sequence yn ∈ Oε such that

lim ‖yn−p(yn)‖
‖p(yn)‖ =∞. That is, lim ‖p(yn)‖

‖yn−p(yn)‖ = 0 or alternatively

lim
p

(
yn

)∥∥yn −p
(
yn

)∥∥ = 0.

Set Hn = yn − p
(
yn

) ∈ h, Dn = ad(Hn) and Xn = ad
(
p

(
yn

))
. As in the proof of

lemma 2.9, let an be the eigenvalue of Dn with largest absolute value, so that
‖Dn‖ = |an |. Since the adjoint map ad : g→ gl (g) is injective, there exist con-
stants C1,C2 > 0 such that for all Z ∈ g we have C1 ‖ad(Z )‖ ≥ ‖Z‖ ≥C2 ‖ad(Z )‖.
In particular, ‖Hn‖ ≥C2 ‖Dn‖. Therefore,

lim
p

(
yn

)
|an |

= 0

and we obtain

lim
Xn

|an |
= 0.

Now, to arrive at a contradiction, we proceed as in the proof of lemma 2.9:
there exists a subsequence nk such that 1

|ank
|
(
Dnk +Xnk

)
converges to a limit

which has an eigenvalue equal to 1. Therefore, from a certain k0 onwards, each
1

|ank
|
(
Dnk +Xnk

)
has an eigenvalue with absolute value > 1/2, which implies

that ad
(
ynk

) = Dnk + Xnk has a sequence of eigenvalues that converges to ∞.
However, as in item (1), this is a contradiction since yn ∈ O (H0) and, conse-
quently, the eigenvalues of ad

(
yn

)
are the same as those of ad(H0).

�

Now it is possible to show that ‖d Zx‖ is bounded in Oε (and obviously ‖d (i Z )x‖ is
bounded as well).

Lemma 2.11. Given ε> 0 there exists Lε > 0 such that ‖d Zx‖ ≤ Lε if x ∈Oε.

Proof. By lemma 2.7, we have

‖d Zx‖ ≤ M (‖ad(H)‖+M ‖H‖)
‖x‖

‖[x, H ]‖2

if x ∉ h. In particular, this inequality holds for x ∈ Oε. Therefore, it suffices to estimate
‖x‖

‖[x,H ]‖2 .
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Let δ> 0 be given as item (1) of lemma 2.10, such that
∥∥p (x)

∥∥> δ if x ∈Oε. Since H is
regular the restriction of ad(H) to

∑
α∈Πgα is an invertible linear map. Therefore, there

exists C > 0 such that if y ∈ ∑
α∈Πgα and

∥∥y
∥∥ > δ, then

∥∥ad(H) y
∥∥ >C

∥∥y
∥∥. This implies

that if x ∈Oε, then

‖[H , x]‖ = ∥∥[H , H ′+p (x)]
∥∥= ∥∥[H , p (x)]

∥∥>C
∥∥p (x)

∥∥>Cδ.

Consequently, choosing ‖[x, H ]‖ > Cδ as one of the factors of the denominator and
‖[x, H ]‖ >C

∥∥p (x)
∥∥, it follows that

‖x‖
‖[x, H ]‖2 < 1

C 2δ
· ‖x‖∥∥p (x)

∥∥ .

Now, ‖x‖2 = ∥∥x −p (x)
∥∥2 +∥∥p (x)

∥∥2 since x − p (x) ∈ h is orthogonal to p (x) ∈ ∑
α∈Πgα.

Therefore, ( ‖x‖∥∥p (x)
∥∥

)2

=
∥∥x −p (x)

∥∥2 +∥∥p (x)
∥∥2∥∥p (x)

∥∥2

=
∥∥x −p (x)

∥∥2∥∥p (x)
∥∥2 +1.

By lemma 2.10 (2), ‖x−p(x)‖2

‖p(x)‖2 < Γ2
ε, so

‖x‖∥∥p (x)
∥∥ <

√
Γ2
ε+1

if x ∈Oε. This completes the proof, since

Lε = M (‖ad(H)‖+M ‖H‖)

C 2δ

√
Γ2
ε+1

satisfies the desired inequality. �

A similar estimate shows that Z is bounded in each Oε.

Lemma 2.12. Given ε> 0 there exists Mε > 0 such that ‖Z (x)‖ ≤ Mε if x ∈Oε.

Proof. Let M be as in lemma 2.7. Then,

‖Z (x)‖ = 1

‖[x, H ]‖2
‖[x, [τx, H ]]‖

≤ M
‖x‖ ·‖[x, H ]‖
‖[x, H ]‖2 = M

‖x‖
‖[x, H ]‖

and, as in the proof of the previous lemma, ‖x‖
‖[x,H ]‖ in bounded on Oε. �

Lemma 2.11 guarantees that Z is Lipschitz on Oε with constant Lε. The same is true
for the vector field e iθZ with θ ∈ R since

∥∥d
(
e iθZ

)∥∥ = ‖d Z‖. By the previous lemma,
e iθZ is bounded on Oε. Combining these two facts, the theory of differential equations
guarantees that all solutions of Z with initial condition x (0) ∈ Oε extend to a common
interval of definition that contains 0.

Corollary 2.13. Denote by φθt the local flow of the vector field e iθZ . Then, given ε > 0
there exists σε > 0 such that φθt (x) is well defined if t ∈ (−σε,σε) and x ∈Oε. Under these
conditions, φθt (x) ∈Oε.

We are now ready to prove item (2) of theorem 2.2.

Proposition 2.14. If c1,c2 ∈ C are regular values then the level manifolds f −1
H (c1) and

f −1
H (c2) are diffeomorphic.
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Proof. On the set of regular values, define the equivalence relation c1 ∼ c2 if f −1
H (c1) and

f −1
H (c2) are diffeomorphic. We must show there exists a single equivalence class. To do

so, it suffices to show that if c ∈C is a regular value, then there exists a neighbourhood U
of c such that for all d ∈U , f −1

H (d) and f −1
H (c) are diffeomorphic. Indeed, this guaran-

tees that the equivalence classes are open subsets (and, consequently, closed). However,
the set of regular values is connected in C since it is the complement of a finite set.

Fix a regular value c. Since f −1
H (c) does not intercept the set of regular points, there

exists ε> 0 such that f −1 (c) ⊂Oε.
Let σε be as in corollary 2.13. Then φθt (x) is defined for t ∈ (−σε,σε) and x ∈ Oε. In

particular, it is also defined for x ∈ f −1
H (c). For a fixed x, the curve

γθ : t ∈ (−σε,σε) 7→ fH

(
φθt (x)

)
∈C

has derivative γ′
θ

(t ) = (
d fH

)
φθt (x)

(
e iθZ

(
φθt (x)

))
. However, by definition of the field Z ,(

d fH
)

y

(
Z

(
y
))= 1, so we have γ′

θ
(t ) = e iθ . Therefore,

γθ (t ) = γθ (0)+
∫ t

0
γ′θ (s)d s

= fH (x)+ te iθ .

That is, fH
(
φθt (x)

)= fH (x)+ te iθ . In particular, if x ∈ f −1
H (c) then φθt (x) = f −1

H

(
c + te iθ

)
,

which means that φθt
(

f −1
H (c)

) ⊂ f −1
H

(
c + te iθ

)
. The opposite inclusion is obtained ap-

plying the inverse flow φθ−t , and we conclude that φθt
(

f −1
H (c)

)= f −1
H

(
c + te iθ

)
. Thus, φθt

is a diffeomorphism between f −1
H (c) = f −1

H

(
c + te iθ

)
.

This shows that every regular value in the open ball B (c,σε) is equivalent to c, that is,
its fibre is diffeomorphic to the fibre at c. �

2.4. Symplectic form. The symplectic form that solves item (3) of theorem 2.2 is the
imaginary part of the Hermitian form H from (2.1). We write the real and imaginary
parts of H as

H (X ,Y ) = (X ,Y )+ iΩ (X ,Y ) X ,Y ∈ g.

The real part (·, ·) is an inner product (since (X , X ) = H (X , X )) and the imaginary part
of Ω is a symplectic form on g. Indeed, we have

0 6= iH (X , X ) =H (i X , X ) = iΩ (i X , X ) ,

that is, Ω (i X , X ) 6= 0 for all X ∈ g, which shows that Ω is nondegenerate. Moreover,
dΩ= 0 because Ω is a constant bilinear form.

The fact that Ω (i X , X ) 6= 0 for all X ∈ g guarantees that the restriction of Ω to any
complex subspace of g is also nondegenerate.

Now, the tangent spaces to O (H0) are complex vector subspaces of g. Therefore, the
pullback of Ω by the inclusion O (H0) ,→ g defines a symplectic form on O (H0).

Finally, the subspaces tangent to the level manifolds f −1
H (c) are complex subspaces

of g as well. Thus, if c is a regular value then f −1
H (c) is a symplectic submanifold of

O (H0).
This concludes the proof of item (3) of theorem 2.2.

Remark 2.15. An adjoint orbit O (X ) ⊂ g admits another natural symplectic form ω be-
sides the formΩ defined by H . In fact, since g is semisimple, the adjoint representation
is isomorphic to the co-adjoint representation (via the Cartan–Killing form 〈·, ·〉). Hence,
the general construction of symplectic forms on co-adjoint orbits of Kirillov–Kostant–
Souriaux can be carried through to the adjoint orbits of g. This yields the symplectic
form ω on O (X ) defined by ωx ([x, A], [x,B ]) = 〈x, [A,B ]〉, where x ∈ O (X ) and A,B ∈ g
(recall that [x, A], [x,B ] ∈ TxO (X )). Nevertheless, the regular fibres f −1

H (c) of fH are not
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symplectic submanifolds with respect to this ω. In fact, the vector [x, H ] is a tangent to
f −1

H (c), since if x ∈ f −1
H (c), then(

d fH
)

x ([x, H ]) = 〈H , [x, H ]〉 = 〈[H , H ], x〉 = 0.

If x is a regular point, then [x, H ] 6= 0, but if [x, A] (with x ∈O (X ) and A ∈ g) is tangent to
f −1

H (c) then
ωx ([x, H ], [x, A]) = 〈x, [H , A]〉 = 0

since 0 = (
d fH

)
x ([x, A]) = 〈H , [A, x]〉 = 〈x, [H , A]〉.

Now a few comments about the singular fibres. First a note on the special case when
H0 ∈ hR. Let w H0, w ∈W , be a singularity. Define

Π (w H0) = {α ∈Π :α (H0) > 0}.

Then the subspaces
n± (w H0) =

∑
α∈±Π(w H0)

gα

are the nilpotent subalgebras of g. Let N± (w H0) be the connected groups with Lie al-
gebra n± (w H0). Then the following result holds true (see Helgason):

• The map n ∈ N+ (w H0) 7→ Ad(n) (w H0)−w H0 ∈ n+ (w H0) is a diffeomorphism.
Similarly, there is such an isomorphism between N− (w H0) and n− (w H0).

In particular, this implies that for all n ∈ N± (w H0), Ad(n) (w H0) = w H0 + X with
X ∈ n±. Therefore,

fH (Ad(n) w H0) = 〈H , w H0 +X 〉 = 〈H , w H0〉 = fH (w H0) .

Consequently, the complex subspaces Ad
(
N± (w H0)

)
(w H0) = (w H0)+n± (w H0) are con-

tained in the singular fibre f −1
H (〈H , w H0〉). This will be enough for us to analyse the

singular fibre on the next example. For higher dimensions the structure of the singular
fibres turns out rather more intricate, we will approach this issue in the forthcoming
paper [GGS].

2.5. Fukaya–Seidel cateogory for the sl (2,C) orbit. We now describe the Fukaya–Seidel
category associated to the Landau–Ginzburg model obtained from theorem 2.2 by choos-
ing in sl (2,C) the elements

H = H0 =
(

1 0
0 −1

)
.

Hence O (H0) is the set of matrices in sl (2,C) with eigenvalues ±1. This set forms a
submanifold Σ of sl (2,C) of real dimension 4 (a complex surface). In this case the Weyl
group is W = {±1}. Therefore, the potential fH =: Σ→ C has two singularities, namely
±H . We obtain:

Example 2.16. The Fukaya–Seidel category of (Σ, fH ) with integer coefficients is gener-
ated by 2 Lagrangians L0 and L1 in degrees 0 and 1 respectively, with morphisms:

Hom(L0,L1) =Z2, Hom(L0,L0) = Hom(L1,L1) =Z, Hom(L1,L0) = 0

and the products mk all vanish except for m2(·, i d) and m2(i d , ·).

The regular fibres are submanifolds of real dimension 2 (complex curves).
With respect to the singular fibres, for example F−1

H (〈H , H〉), we have the following
data:

n+ (H) = {

(
0 z
0 0

)
: z ∈C}

whereas n− (H) are lower triangular. Then, the sets

H +n+ (H) = {

(
1 z
0 −1

)
: z ∈C} H +n− (H) = {

(
1 0
z −1

)
: z ∈C}



12 ELIZABETH GASPARIM, LINO GRAMA, AND LUIZ A. B. SAN MARTIN

are contained in f −1
H (〈H , H〉). Counting dimensions we conclude that the union of these

two affine subspaces is exactly f −1
H (〈H , H〉). More precisely: the matrix

X =
(

a b
c −a

)
∈ sl (2,C)

belongs to f −1
H (〈H , H〉) if and only if tr(X H) = tr

(
H 2

)= 2, since in this case there exists a
constant c such that for all A,B ∈ sl (2,C), 〈A,B〉 = ctr(AB). Since tr(X H) = 2a, it follows
that tr(X H) = 2 if and only if a = 1. Then, the characteristic polynomial of X is

pX (λ) =λ2 − (1+bc) .

Since X ∈ O (H), it has eigenvalues ±1. This happens if and only if 1+bc = 1, that is,
bc = 0. Therefore, X ∈ f −1

H (〈H , H〉) if and only if

X =
(

1 b
0 −1

)
or X =

(
1 0
c −1

)
.

We can also describe the regular fibres. For example, the matrix

X =
(

a b
c −a

)
∈ sl (2,C)

belongs to the regular fibre f −1
H (0) if and only if 2a = tr(X H) = 0, that is, a = 0. Hence ,

the characteristic polynomial is pX (λ) = λ2 −bc and the eigenvalues are ±1 if and only
if bc = 1. Therefore, f −1

H (0) consists of matrices(
0 b

1/b 0

)
0 6= b ∈C.

Thus, we find that f −1
H (0) and all regular fibres are homeomorphic to the cylinderC\{0}.

Now we will describe the thimbles using branched covers. We have the surface Σ =
{x2 + y z = 1} together with the potential

fH : Σ→C

(x, y, z) 7→ 2x.

To find the critical points of fH |Σ we use Lagrange multipliers, thus solving grad f =
ξgrad g with g = 1 which gives (2,0,0) = (2x, z, y), where g = g (x, y, z) = x2 + y z. We ob-
tain the critical point (x, y, z) = (1,0,0) with corresponding singular fibre f −1

H (1) = {y z =
0}.

On the other hand, for a regular value λ ∈ C we write 2x = λ that is x = λ/2, so λ2

4 +
y z = 1. We set

Σλ :=
{

y z = 1− λ2

4

}
.

We first consider the cut given by y = z where we need to analyse the two branches

of the square root y =±
√

1− λ2

4 . We get the two curvesλ
2

,±
√

1− λ2

4
,±

√
1− λ2

4

 λ→2−→ (1,0,0).

Using these curves we want to write down the thimbles, that is, for each λ we wish to
identify a circle in X with γ(t ) with

γ(0) =
(
λ
2 ,

√
1− λ2

4 ,
√

1− λ2

4

)
and γ(π) =

(
λ
2 ,−

√
1− λ2

4 ,−
√

1− λ2

4

)
. For 0 ≤ t ≤ 2π we

take the thimble to be:

αλ(t ) =
λ

2
,e i t

√
1− λ2

4
,e−i t

√
1− λ2

4

 .
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Thus, αλ(t ) → (1,0,0) as λ → 2 and for a regular value λ the curve γ(t ) := αλ(t ) is a
Lagrangian circle on the fibre f −1

H (λ). We fix a regular value, say 0 ∈C, and consider the
straight line joining the regular value 0 to the critical value 2 (that is, a matching path).
Then the family of Lagrangian circles αλ(t ) is fibred over the straight line and produces
the Lagrangian thimble. With a similar analysis we can produce the Lefschetz thimble
associated to the critical value −2.

Considering the line joining the two critical values −2 and 2 together with the union
of the two corresponding Lefcshetz thimbles we obtain a sphere Y in the orbit Σ =
O (H0). The next result shows that this sphere is a Lagrangean subvariety of Σ.

Lemma 2.17. Consider the orbit Σ with the symplectic form Ω as in section 2.4, then
Y ⊂Σ given by the equation x2 + y2 + z2 = 1 is a Lagrangean submanifold.

Proof. Let u be a real compact form of sl(2,C). Here u is the set of anti-Hermitian ma-
trices with trace zero, thus

p−1u is the set of Hermitian matrices with trace zero. Note
that the submanifold Y can be described as the intersectionY = Σ∩p−1u. In fact, an
arbitrary matrix S ∈p−1u has the form

S =
(

r −p + i q
−p − i q −r

)
,

with p, q,r ∈R. Since the orbit Σ consists of 2×2 complex matrices whose entries satisfy
x2 + y z = 1, we see that S ∈Σ if and only if its entries satisfy r 2 +p2 +q2 = 1.

The tangent space of Y at S is given by TS Y = {[S, A]; A ∈ u}. Since [
p−1u,u] ⊂p−1u

and tr (M .N ) is real when M , N ∈p−1u, we conclude that ΩS ([S, A], [S,B ]) = 0 thus Y is
Lagrangean. �

Remark 2.18. In greater generality, let g be a simple complex Lie algebra and u a real
compact form of g. Consider an adjoint orbit O (H0). It is known that the intersection
O (H0)∩p−1u is a generalized flag variety. An argument similar to the previous one
shows that such generalized flag varieties are Lagrangeans inside the corresponding or-
bits with respect to the symplectic form Ω.

Remark 2.19. [GGS] we take an appropriate choice of symplectic structure on adjoint
orbits for which each adjoint orbit of a semisimple Lie group becomes symplectomor-
phic to the cotangent bundle of a generalized flag variety. In this particular example
of sl(2,C) the flag variety is CP1 ≈ S2 and consequently O (H0) ≈ T ∗CP1. See Section 3
bellow for further details.

Remark 2.20. The symplectic topology of the Milnor fibration with singularity of type
An was studied in [KS] using braid group techniques. In particular one can read off the
Floer cohomology of T ∗(S2) considered with the standard symplectic structure. Our
construction of the adjoint orbit for sl(2,C) endows T ∗(S2) with another symplectic
structure, and our calculations use completely different techniques. This coincidence
of examples is a feature of low dimensions, and will not repeat itself for the orbits of
sl(n,C) with n > 2 where our flag varieties are not spheres.

We will now describe the Fukaya–Seidel category associated to the Landau–Ginzburg
model LG(Σ, fH ), whose objects are the vanishing cycles (or Lagrangian thimbles). We
first recall the definition.

Definition 2.21. ([AKO1], def. 3.1) The directed category of vanishing cycles Lagvc( f ,γ)
is an A∞-category (over a coefficient ring R) with r objects L1, . . . ,Lr corresponding to
the vanishing cycles (or more accurately, to the thimbles); the morphisms between the
objects are given by

(2.5) Hom(Li ,L j ) =


C F∗(Li ,L j ,R) = R |Li∩L j | if i < j
R · id if i = j
0 if i > j
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and the differential m1, composition m2 and higher order products mk are defined in
terms of Lagrangian Floer homology inside the regular fibre Σ0. More precisely,

mk : Hom(Li0 ,Li1 )⊗·· ·⊗Hom(Lik−1 ,Lik ) → Hom(Li0 ,Lik )[2−k]

is trivial when the inequality i0 < i1 < ·· · < ik fails to hold. When i0 < ·· · < ik , mk is
defined by fixing a genericω-compatible almost-complex structure on Σ0 and counting
pseudo-holomorphic maps from a disc with k +1 cyclically ordered marked points on
its boundary toΣ0, mapping the marked points to the given intersection points between
vanishing cycles, and the portions of boundary between them to Li0 , . . . ,Lik respectively.
We refer to this as the Fukaya–Seidel category.

To proceed with our example, we fix the regular value 0 ∈ C of our LG model and
consider the line segments β and γ that join −2 to 0 and 0 to 2, respectively. The objects
of the Fukaya–Seidel category are the two Lagrangean thimbles L0 :=αβ(s)(t ) and L̃0 :=
αγ(s)(t ) (abusing notation we consider as L0 and L̃0 only the vanishing cycles in the
regular fiber Σ0; in our case, both a circle S1).

Remark 2.22. A different choice of path joining the critical values to the regular value
will result in an equivalent category, see [Se].

To specify the products in the category, we need to describe HF∗(L0, L̃0). However,
as Floer cohomology is rather difficult to calculate, we will use an indirect calculation
allowing as to connect these Floer groups to the de Rham cohomology of S1 (lemma
2.25 below).

First notice that in our case the regular fiber is homeomorphic to C∗, which can be
identified with the cylinder T ∗S1 via the map g :C∗ → T ∗S1 given by

(2.6) g (y) = (
y

|y | , ln |y |).

On the regular fiber Σ0, the vanishing cycles coincide with the curve (0,e i t ,e−i t ) ∈ Σ0

(just make λ= 0 in the above expressions for the thimbles).
We now observe a delicate issue: the regular fibreC∗ inherits the symplectic structure

Ω from the adjoint orbit. Such symplectic structure is (up to a constant) the canonical
Kähler structure of C∗ regarded as a submanifold of C. Via 2.5 we regard the regular
fibre as (T ∗S1,Ω) which, however, is not symplectomorphic to (T ∗S1,ωc ), where ωc is
the canonical exact symplectic form on the cotangent bundle, see [EG]. Nevertheless,
thm. 2.23 below makes it is possible to use the canonical symplectic form ωc to help
find the required Floer cohomology.

Recall that a Lagrangian submanifold L of (X ,ω= dθ) is called admissible provided L
is exact (that is, [θ|L] = 0), spin, and has zero Maslov class.

By Weinstein’s tubular neighborhood theorem, there exists a symplectic embedding
κ from a tubular neighborhood of S1 ⊂ (T ∗S1,ωc ) into (T ∗S1,Ω) such that κ(S1) = S1

(note que S1 is Lagrangean with respect to both symplectic structures in T ∗S1). The
next result relates the Floer homologies via the map κ.

Theorem 2.23 ([FSS], Lemma 8). Let (X ,ω= dθ) be an exact symplectic manifold and N
a Lagrangean submanifold of X . Let κ be the symplectic embedding given by the theorem
of Weinstein from a neighborhood V (N ) of N in T ∗N to X . Let L0,L1 ⊂ V (N ) be closed
admissible Lagrangean submanifolds. Then HF∗(κ(L0),κ(L1)) ∼= HF∗(L0,L1).

Observe that the Floer cohomology on the lhs takes place in X whereas on the rhs it
takes place in T ∗N .

Remark 2.24. In [FSS] thm. 2.23 appears in the context of Lefschetz fibrations with a
real structure, however, the real structure is not used in its proof, thus the result applies
to our situation.
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Returning to our example, we now consider the cotangent bundle (T ∗S1,ωc ) with its
canonical symplectic form. To find the Floer homology, we will perturb the circle L̃0 by
Hamiltonian isotopy as follows: let f : S1 →R be a Morse function and ε> 0 small. Let

L1 := { graph of the exact 1-form εd f }.

We have that L1 is a Hamiltonian isotopic image of L̃0 (with isotopy given by H = ε f ◦π,
where π : T ∗S1 → S1 is the canonical projection) and L0 intersects transversally L1 at
the critical points of f . The next result is well known and relates the Floer homology
HF (L0, L̃0) with the Morse homology of f (keeping in mind that Floer homology is in-
variant by Hamiltonian isotopies), see [Au] and [FOOO].

Lemma 2.25. HF∗(L0,L1) ≈ H∗(S1;R).

Combining lemma 2.25 and theorem 2.23 we obtain:

Corollary 2.26. For L0 and L1 considered as Lagrangians in (Σ0,Ω) we have HF∗(L0,L1) ≈
H∗(S1;R).

We now fix a Morse function f : S1 →R with exactly 2 critical points. Since the prod-
uct m1 in the Fukaya–Seidel category is the differential of Floer homology, using lemma
2.25, we obtain the following description of the products mi :

Lemma 2.27. The products mi for the Fukaya–Seidel category of LG(X ,W ) all vanish,
except for the trivial products m2(i d , ·) and m2(·, i d).

Explicit calculation (see [Au], [FOOO]) shows that a critical point of f (which results
in an intersection of the Lagrangeans) with Morse index i (p) defines a generator of de-
gree deg (p) = n − i (p) in the Floer complex, where n is the dimension of the variety (in
our case dimS1 = 1). Since we have chosen f with exactly two critical points (a maxi-
mum and a minimum), the Morse indices are 0 and 1, respectively. We obtain:

Lemma 2.28. There is a natural choice of grading such that deg (L0) = 0 and deg (L1) = 1.

Remark 2.29. Comparison with the AKO-mirror of CP1: We observe that, despite the
isomorphism Σ ' T ∗CP1 the Fukaya–Seidel category we just described is not isomor-
phic to the Fukaya–Seidel category of the mirror of CP1 described in [AKO1]. Indeed,
although the number of objects, morphisms and products of the A∞ structures coin-
cide, the gradings are different. It is an open question to determine which complex
(algebraic) variety has the the Landau–Ginzburg model LG(Σ, fH ) we have described as
its mirror.

3. TOPOLOGY OF THE REGULAR FIBRES

To describe the regular fibres of fH we use another description of the adjoint orbit,
namely we regard it as a vector bundle. In fact, the adjoint orbit has various realizations
(e.g. as a homogeneous space, and as the cotangent bundle of a flag manifold). These
various realizations, as well as their symplectic geometry, are explored in detail in [GGS].
The realization of the orbit as a cotangent bundle appeared earlier in [ABB].

To study the topology of the regular fibres, we first identify the orbit O (H0) with the
cotangent bundle of a flag manifold. Here is a summary of the construction. Let G
be a semisimple Lie group with Lie algebra g and Cartan subalgebra h. The adjoint
orbit of an element H0 ⊂ h can be identified with the homogeneous space G/ZH0 , where
ZH0 is the centraliser of H0 in G . We also identify the adjoint orbit Ad(K ) · H0 of the
maximal compact subgroup K of G with the flag manifold FH0 =G/PH0 , where PH0 is the
parabolic subgroup which contains ZH0 . Using the construction of the vector bundle
associated to the PH0 -principal bundle G → FH0 = G/PH0 we showed that the quotient
G/ZH0 has the structure of a vector bundle over FH0 isomorphic to the cotangent bundle
T ∗FH0 [GGS, thm. 2.1].
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Remark 3.1. In Example 2.21, the associated flag variety is CP1 ≈ S2 and consequently
O (H0) ≈ T ∗CP1.

We now use the identification of the orbit with the cotangent bundle of a flag to de-
scribe the regular fibres of fH . Our height function fH (x) = 〈H , x〉, x ∈ O (H0), takes
values in C, whereas, by hypothesis, H and H0 are real, that is, belong to hR, and H is
regular. We showed in proposition 2.4 that fH has a finite number of singularities. These
singular points belong to FH0 , regarded as the orbit of the compact group U ·H0.

Since H and H0 are real, fH restricted to FH0 takes real values. H and H0 can be
chosen in general position such that 〈H , w H0〉 = 〈H ,uH0〉 if and only if w = u, where
w,u ∈ W . (The latter condition implies that the singular levels do not intersect. Such
general position may be obtained by fixing H0 then varying H .)

In this section and the next, when we use the identification of the adjoint orbit with
the cotangent bundle of a flag manifold, the word fibre appears in two senses: a fibre of
the Lefschetz fibration fH which is topologically nontrivial, and a fibre of the cotangent
bundle T ∗FH0 which is a vector space. To avoid confusion between the two meanings
of fibre, we introduce the term level:

Definition 3.2. We call L (ξ) = f −1
H

(
fH (ξ)

)
the level of fH passing through ξ ∈ O (H0). If

L (ξ) contains a singularity of fH we call it a singular level, otherwise we call it a regular
level.

Notation 3.3. X̃ denotes the vector field on FH0 induced by X ∈ g, defined as X̃ (x) =
d

d t e t X x|t=0 .

Theorem 3.4. A regular level L (ξ) is an affine subbundle of the cotangent bundle re-
stricted to the complement of the singular points FH0 \ W · H0. More precisely, a regular
level L (ξ) surjects over FH0 \ W ·H0 and its intersection with the cotangent fibre T ∗

x FH0 is
an affine subspace, whose underlying vector space is

VH (x) = {µ ∈ T ∗
x FH0 :µ

(
H̃ (x)

)= 0}.

Identifying T ∗FH0 with the tangent bundle TFH0 via the Borel metric, the subspace
VH (x) becomes the subspace orthogonal to H̃ (x), which is exactly the space tangent to
the level x of the function fH restricted to the flag.

The proof of theorem 3.4 is a rather immediate consequence of the construction of
the action of G on T ∗FH0 , that identifies it with the adjoint orbit O (H0) = Ad(G) ·H0. It
involves the following facts:

(1) The real part of fH is known. In fact, let gR be the realification of g (which is also
a semisimplesimple Lie algebra). Denote by 〈·, ·〉R the Cartan–Killing form of gR .
Then, 〈·, ·〉R = 2Re〈·, ·〉. Thus,

(
Re fH

)
(x) = 1/2 f R (x) where f R (x) = 〈H , x〉R .

(2) The Cartan decomposition of g (or rather of gR ) is given by g= u⊕ iu where u is
the real compact form of g and s = iu. The group U = 〈expu〉 is compact. The
exponential is taken to any group G with Lie algebra g.

(3) Since u is a real compact form, it follows that the restriction of the Cartan-Killing
form 〈·, ·〉 to u is negative definite (and takes real values). Hence, the restriction
to iu is positive definite. Moreover, if X ∈ u and Y ∈ iu then 〈X ,Y 〉 is purely
imaginary.

(4) The intersection O (H0)∩ iu coincides with the flag FH0 = Ad(U ) H0.
(5) The restriciton of fH to O (H0)∩ iu= FH0 is real, equal to 1/2 f R .
(6) The imaginary part of fH comes from fi H (x) = 〈i H , x〉, x ∈O (H0), in the follow-

ing way:

fi H (x) = i 〈H , x〉 = i fH (x) =−Im fH (x)+ i Re fH (x) ,

therefore Im fH (x) =−Re fi H (x) =−Re〈i H , x〉 =− 1
2 〈i H , x〉R . Hence,

fH = f R
H − i f R

i H
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where the upper index indicates that the height function is taken with respect
to the real Cartan–Killing form 〈·, ·〉R = 2Re〈·, ·〉. This seemingly trivial formula is
useful to express fH when we regard O (H0) as T ∗FH0 .

(7) Height function on the cotangent bundle (real part): If X ∈ s = iu then α (X ) =
X #+VX . This means that the vector field

−→
X induced by X on O (H0) is the Hamil-

tonian vector field of the function
(
X̃ , ·)B +F R

X where (·, ·)B is the Borel metric on
FH0 , F R

X = f R
X ◦π and X̃ is the vector field induced by X on FH0 .

In particular, the hypothesis that H is real implies that H ∈ s= iu and there-

fore the vector field
−→
H induced by H on O (H0) is the Hamiltonian of the func-

tion
(
H̃ , ·)B + F R

H . On the other hand, we know that the vector field
−→
H (given

by
−→
H (x) = [H , x]) is the Hamiltonian of the function f R

H (x) = 〈H , x〉R defined
on O (H0). Thus, the two functions give rise to the same Hamiltonian fields
and consequently differ by a constant. That is, via the diffeomorphism between
O (H0) and T ∗FH0 the function f R

H (x) = 〈x, H〉 is given by f R
H = (

H̃ , ·)B +F R
H +ct.

(8) Height function on the cotangent bundle (imaginary part): the imaginary part is

given by f R
i H . The difference here is that i H ∈ u, therefore

−→
i H is the Hamiltonian

field of the function
(
ĩ H , ·)B . But

−→
i H is the Hamiltonian field of f R

i H as well, thus

f R
i H = (

ĩ H , ·)B +ct. Together with the previous item, this gives

fH = (
H̃ , ·)B +F R

H − i
(
ĩ H , ·)B +ct.

(9) The constant of the previous item is calculated evaluating the equality on H0;
terms involving the Borel metric vanish (zero section). Therefore

ct = fH (H0)−F R
H (H0) = fH (H0)− f R

H (H0) = 〈H , H0〉−〈H , H0〉R = 0

since 〈H , H0〉 is real.

Proof of theorem 3.4: Choose a regular point x ∈ FH0 =O (H0)∩iu. Then, the restriction
of fH to the tangent space TxFH0 (identified with T ∗

x FH0 by the Borel metric) is given by(
H̃ (x) , ·)B − i

(
ĩ H (x) , ·)B + f R

H (x)

which is an affine map, hence surjective. So, if x ∈ FH0 is a regular point of fH (that is,
x ∈ FH0 \ W · H0) then every level of fH intercepts TxFH0 . This shows that every regular
level L(ξ) projects surjectivelly onto FH0 \W ·H0. On the other hand, the intersection of
a level L (ξ) with the tangent space TxFH0 is given by the codimension 2 affine subspace

L (ξ)∩TxFH0 = {v ∈ TxFH0 :
(
H̃ (x) , v

)
B − i

(
ĩ H (x) , v

)
B = f R

H (x)+ fH (ξ)}

which shows that L (ξ) is an affine subbundle of T ∗FH0 . ä
As a consequence we identify the topology of a regular level L (ξ):

Corollary 3.5. The homology of a regular level L (ξ) coincides with that of FH0 \ W ·H0.
In particular, the middle Betti number of L (ξ) equals k − 1, where k is the number of
singularities of the fibration fH (and equals the number of elements in the orbit W ·H0).

4. TOPOLOGY OF THE SINGULAR FIBRES

The singular levels of fH are the levels that pass through w H0, w ∈ W . Assume that
H0 and H are in “general position”, so that each singular fibre contains just one singu-
larity.

The following proposition gives a description of the singular levels of fH . In the state-
ment, π : O (H0) → FH0 is the canonical projection that makes O (H0) ≈ T ∗FH0 , where
T ∗FH0 is the flag manifold defined by H0.

Proposition 4.1. The singular fibre of f −1
H

(
fH (w H0)

)
passing through w H0 is the dis-

joint union of the following sets:
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(1) An affine subbundle of real codimension 2 of O (H0) → FH0 \ {uH0 : u ∈ W } over
the set of regular points of FH0 .

(2) The fibre π−1(w H0). As a subset of g (in the adjoint orbit) this fibre is given by the
affine subspace

w H0 +n+ (w H0)

where n+w is the sum of eigenspaces with positive eigenvalues of ad(w H0).

The subspace n+ (w H0) in the statement is a nilpotent subalgebra given by

n+ (w H0) =
∑

α∈Π(w H0)
gα

where Π (w H0) = {α ∈Π :α (H0) > 0}.

Proof. To prove the proposition we examine the intersection of the level f −1
H

(
fH (w H0)

)
with the fibres of π : O (H0) → FH0 . Such intersections can be described as follows:

(1) Let x ∈ FH0 be a regular point of fH , that is, x 6= uH0 for all u ∈ W . Then, the
restriction of fH to the cotangent fibre π−1{x} is an affine map, whose linear
part is nonzero. Such linear part is the functional

(
H̃ , ·)B −i

(
ĩ H , ·)B , where (·, ·)B

is the Borel metric). If x ∈ FH0 is a regular point, then the linear part has no zeros.
This implies that all levels of fH intersect π−1{x} = T ∗

x FH0 on affine subspaces of
complex codimension 1, proving statement (1).

(2) Let N+ (w H0) be the connected group with Lie algebra n+ (w H0). Then, the map

n ∈ N+ (w H0) 7→ Ad(n) (w H0)−w H0 ∈ n+ (w H0)

is a diffeomorphism. In particular, for all n ∈ N+ (w H0), Ad(n) (w H0) = w H0+X
with X ∈ n+. Therefore,

(4.1) fH (Ad(n) w H0) = 〈H , w H0 +X 〉 = 〈H , w H0〉 = fH (w H0) .

Hence, the affine subspace Ad
(
N+ (w H0)

)
(w H0) = (w H0) + n+ (w H0) is con-

tained in the singular level f −1
H (〈H , w H0〉).

Using the isomorphism O (H0) ≈ T ∗FH0 , we see that the fibre over w H0 is
precisely (w H0)+n+ (w H0), proving statement (2).

(3) It remains to verify that if uH0 6= w H0 then the fibreπ−1{uH0} does not intersect
the level f −1

H (〈H , w H0〉). By the same argument as in the previous item, the fibre
π−1{uH0} in the adjoint orbit, is given by the adjoint subspace (uH0)+n+ (uH0).
By equalities (4.1) fH is constant on this subspace and equals fH (uH0). Since
by hypothesis each singular level contains just one singularity, this shows that
f −1

H (〈H , w H0〉) does not intersect the fibre over uH0 6= w H0.

�

Corollary 4.2. The homology of a singular level L (w H0), w ∈W coincides with that of

FH0 \ {uH0 ∈W ·H0 : u 6= w}.

In particular, the middle Betti number of L (w H0) equals k −2, where k is the number of
singularities of the fibration fH .

Example 4.3. In the case of Sl(2,C) the singular fibres are just the union of 2 sub-
spaces. In this case the affine bundle has rank 0 and each fibre of this bundle intersects
H0 + n− (H0) as well as (w0H0)+ n− (w0H0) with w0H0 = −H0. We conclude that this
subbundle is contained in the affine spaces H0+n− (H0) and (w0H0)+n− (w0H0) which
are part of the singular levels of H0 and w0H0 =−H0, respectively.
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