
SHEAVES ON SINGULAR VARIETIES
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Abstract. We prove existence of reflexive sheaves on singular surfaces and threefolds with

prescribed numerical invariants and study their moduli.

1. Motivation

Sheaves on singular varieties have become very popular recently because of their appearance
in Physics, String Theory and Mirror Symmetry. In particular, many open questions about
sheaves on singular varieties have come to light. The corresponding mathematical tools, how-
ever, are waiting to be developed. Our aim in this paper is to entice singularists to develop
some basic techniques needed to approach such questions.

It is extremely common for a physicist or string theorist to start up a lecture by giving a
partition function for a theory, and now even algebraic geometers are quite often doing the same.
It is not just a fashion, but the fact is that this is an extremely efficient way to present results.
The general format of such partition functions is of an infinite sum whose terms contain integrals
over moduli spaces. Here are some examples. We will not need details from these expressions,
just the observation that they all contain integrals over moduli spaces.

Example 1.1. (String Theory) The Nekrasov partition function for N = 2 supersymmetric
SU(r) pure gauge theory on a complex surface X is given by an expression of the form

ZX := Λ(1−r)d·d
∑
n≥0

Λ2rn

∫
Mr,d,n(X)

1 ,

where Mr,d,n(X) is the moduli space of framed torsion-free sheaves or rank r, and Chern classes
c1 = d and c2 = n. For the case of gauge theories with matter, one writes a similar expression
but with more interesting integrands, see [GL].

Example 1.2. (Donaldson–Thomas Theory) For a Calabi–Yau threefold X, the partition func-
tion for Donaldson–Thomas theory is given by:

ZX :=
∑

β∈H2(X,Z)

∑
n∈Z

Qnvβ
∫

[In(X,β)]vir
1 ,

where In(X,β) is the moduli space of ideal sheaves I fitting into an exact sequence

0 −→ I −→ OX −→ OY −→ 0

and satisfying
χ(OY ) = n

and [Y ] = β ∈ H2(X,Z), where χ is the holomorphic Euler characteristic, see [MNOP].
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Example 1.3. (Gromov–Witten Theory) For a Calabi–Yau threefold X, the partition function
for degree-β Gromov–Witten invariants is given by

ZX := exp
∑
β 6=0

∑
g≥0

u2g−2vβ
∫

[Mg(X,β)]vir
1 ,

where Mg(X,β) is the moduli space of genus-g curves representing the class β ∈ H2(X,Z).
There is a precise sense in which this partition function is equivalent to the one in Example 1.2,
see [MNOP].

These examples illustrate the appearance of integrals over moduli spaces of sheaves. Even in
the case of moduli spaces of maps of Example 1.3 the theory is still related to a theory given by
integration over moduli of sheaves. Observe that the definition of moduli spaces itself requires
a choice of numerical invariants: in Example 1.1 the Chern classes and in Example 1.2 the
Euler characteristic. So, we now agree that we are interested in moduli spaces of sheaves on
surfaces and threefolds. Of course, the physics motivation is just a bonus, and we could have
been interested in such moduli spaces for purely geometric reasons, as they are part of classical
algebraic geometry. Now physics dictates that we should consider theories defined over singular
varieties. In fact, some of the most popular categories considered currently by physicists and
string theorists turn out empty in the absence of singularities; such is the case of the Fukaya–
Seidel category and the Orlov category of singularities. Thus we arrive at the conclusion that
we need to understand moduli of sheaves on singular varieties. Both the case of global moduli
of sheaves on projective varieties and the case of local moduli on a small neighborhood of a
singularity are of interest. For the local case there is an added difficulty: What are the correct
numerical invariants to be considered? In this paper we will show that the local holomorphic
Euler characteristic provides a satisfactory invariant for sheaves on local surfaces. For the case
of local threefolds however, the study of numerical invariants is work in progress, and much
remains to be done. The goal of this paper is to describe partial progress in the understanding
of these questions. We define new numerical invariants for the threefold case, and give existence
of sheaves with given local numerical data.
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2. Main Results

In this paper we consider rational surface singularities obtained by contracting a line ` ∼=
P1 inside a smooth surface or threefold. Numerous approaches using numerical invariants or
characteristic classes of some sort have been proposed in the past, see e.g. [Br], and in Section 3
we define numerical invariants, some of which are new, that we need for the present situation.
To set the stage, in Section 4 we recall some of our earlier results for sheaves on singular surfaces.
The results for threefolds presented in Section 5 are new and will appear in more detail in [Kö].

In Section 3 we define the local holomorphic Euler characteristic χ(`,F) of a reflexive sheaf
F . We will present the following results.

Theorem 4.4. Let Mn(Xk) be the moduli of reflexive sheaves on C2
/
Zk with local holomorphic

Euler characteristic equal to n. Then for all n ≥ 0, Mn(Xk) is non-empty.
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Theorem 5.1. For every rank-2 bundle E on W1 := Tot
(
OP1(−1)⊕OP1(−1)

)
with c1(E) = 0

and E|P1 ∼= OP1(−j)⊕OP1(j), the following bounds are sharp:

j − 1 ≤ χ(`, π∗E) = h(E) ≤ (j2 + j)(j − 1)/6 .

Here π : W1 → X is the contraction of the zero section ` and X is the singular threefold
xy − zw = 0 in C4.

Theorem 5.7. Let X be the singular threefold xy − zw = 0 in C4. For each j ≥ 2 there exists
a (4j − 5)-dimensional family of rank-2 reflexive sheaves on X with local holomorphic Euler
characteristic j − 1.

For each of the cases j = 0 or 1, our methods produce only the direct images of the split
sheaves; both have local holomorphic Euler characteristic 0.

3. Numerical Invariants

In this section we define numerical invariants for sheaves on a neighborhood of a singularity.
Our first invariant is defined for any dimension, and is particularly adapted to study reflexive
sheaves that are direct images of vector bundles on a resolution. Let π : (Z, `) → (X,x) be a
resolution of an isolated quotient singularity, F a reflexive sheaf on Z and n := dimX. The
following definition is due to Blache, [Bl, Def. 3.9].

Definition 3.1. The local holomorphic Euler characteristic of π∗F at x is

(3.1) χ
(
x, π∗F

)
:= χ

(
`,F

)
:= h0

(
X; (π∗F)∨∨

/
π∗F

)
+
n−1∑
i=1

(−1)i−1h0
(
X; Riπ∗F

)
.

For the case when X is a compact orbifold, Blache [Bl] shows that the global Euler charac-
teristics of X and its resolution are related by

(3.2) χ
(
X, (π∗F)∨∨

)
= χ

(
Z,F

)
+

∑
x∈SingX

χ
(
x, π∗F

)
.

Example 3.2. (Homological dimension 1 ) Consider the case when Z is itself the total space of
a bundle on P1. Then Z has homological dimension one, and the expression on the right-hand
side of (3.1) reduces to two terms, which we call the width and height of F , respectively:

(3.3) w(F) := h0
(
X; (π∗F)∨∨

/
π∗F

)
and h(F) := h0

(
X; R1π∗F

)
.

Hence χ = w + h.

The case when Z is the total space of a negative line bundle on P1 was studied in [BGK1]
and [GKM]. Unfortunately, the width vanishes in higher dimensions.

Lemma 3.3. [BGK1, Lemma 5.2] Let C be a curve of codimension n ≥ 2 in Z and π : Z → X
the contraction of C to a point. Then for any reflexive sheaf F on Z we have

h0
(
X; (π∗F)∨∨

/
π∗F

)
= 0 .

Example 3.4. (Flop) When W1 = Tot
(
OP1(−1) ⊕ OP1(−1)

)
, Lemma 3.3 shows that w = 0.

The height is still a non-trivial invariant, but less powerful than on surfaces.
However, we can define new invariants by restricting to sub-surfaces. We have two divisors

D0 := Tot
(
OP1(−1)⊕{0})

)
and D∞ := Tot

(
{0}⊕OP1(−1)

)
, which are both isomorphic to Z1,

and they span the linear system

|D| :=
{
λ0D0 + λ∞D∞ : [λ0 : λ∞] ∈ P1

}
.

Then each Dλ ∈ |D| is isomorphic to Z1, and by restriction to Dλ we can define an entire family
of pairs (w,h).
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We now return to the case when Z is the total space of a vector bundle over ` = P1 and there
is a contraction π : Z → X. We will construct sheaves on X as direct images of bundles on
Z, which we now describe. For simplicity, we consider rank-2 bundles with vanishing c1. The
general case is no more difficult, but more unwieldy to present. When E|` ∼= OP1(−j)⊕OP1(j),
we call the integer j ≥ 0 the splitting type of E. It turns out that the ampleness of the conormal
bundle of ` implies that E is an algebraic extension of line bundles,

(3.4) 0 −→ O(−j) −→ E −→ O(j) −→ 0 .

A line bundle O(n) is uniquely determined as the pullback of OP1(n) from P1, since PicZ ∼=
Pic P1. For every j ≥ 0, there is the trivial extension O(−j) ⊕ O(j), which we call the split
bundle of splitting type j. For convenience, we sometimes write Esplit for the split bundle of
the same splitting type as a given bundle E.

The first cohomology of End E is finite-dimensional and furnishes us with our next invariant:

h1
(
Z; End E

)
Naturally, we wish to consider the zeroth cohomology as well. Sadly, this is infinite-dimensional,
so extra effort is required. We consider the mth infinitesimal neighbourhood of `, denoted `(m),
which is a projective scheme. The restriction E(m) := E|`(m) is coherent. For i = 0, 1, we set

ψim(E) := hi
(
`(m); E(m)

)
,

thus ψim takes finite values. We find that the difference ψim(Esplit) − ψim(E) is eventually
constant.

Definition 3.5. For i = 0, 1 and m� 0, set

∆i(E) := ψim(Esplit)− ψim(E) .

For h1, of course, this step is needlessly complicated, as the first cohomology is actually
finite-dimensional, but this way the method may be applied to spaces in which the conormal
bundle of ` is not ample.

The two numbers ∆0 and ∆1 are related via the Hilbert polynomial. Recall that for any
coherent sheaf A on a projective scheme S, the Hilbert series

φ(A, n) := χ
(
A(n)

)
:=
∑
i≥0

(−1)ihi
(
S; A(n)

)
is a polynomial of degree dimS. We have

∆0(E)−∆1(E) = φ
(
E(m), 0

)
− φ

(
E

(m)
split, 0

)
.

But the Hilbert polynomials of E(m) and E(m)
split are the same, as we will show momentarily, and

so we have ∆0 = ∆1, and for computational ease we just stick with h1(End E). The equality
of the Hilbert polynomials, and consequently the fact that the Hilbert polynomial does not see
the extension (3.4), is a consequence of the following result.

Lemma 3.6. Let E be an extension of type (3.4) with splitting type j on either Zk := Tot
(
OP1(−k)

)
or W1 := Tot

(
OP1(−1)⊕OP1(−1)

)
. Then the Hilbert polynomial of E|`m ,

φ
(
E(m), n

)
= χ

(
E(m)(n)

)
:=
∑
i

(−1)ihi
(
`(m); E(n)|`(m)

)
=

{
(m+ 1)(km+ 2 + 2n) on Zk,
1
3 (m+ 2)(m+ 1)(2m+ 3n+ 3) on W1,

is independent of the extension class, and independent of the splitting type j. Similarly, the
Hilbert polynomial of the endomorphism bundle End E|`(m) is 2φ

(
E(m), n

)
.
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w(E) h(E) h1(End E) w(G) h(G) h1(End G)

Z1 6 3 15 1 2 9
Z2 2 2 9 0 2 7
Z3 1 2 7 0 2 6
W1 0 4 35 0 2 17

Table 1. The invariants width, height and h1(End) for the split bundle E and
a generic bundle G of splitting type j = 3 on the spaces Z1, Z2, Z3 and W1.

Proof. By the additivity of the Hilbert polynomial on short exact sequences, the Hilbert poly-
nomials in question are determined by the Hilbert polynomial of the line bundles O`(m)(p) for
all p. Since O`(m)(1) is ample, the higher cohomology of O`(m)(p) vanishes for sufficiently large
p. (We can verify this by direct computation.)

Being a polynomial, the Hilbert polynomial is determined by finitely many values, so it
suffices to compute φ(End E(m), n) = h0

(
`(m); O`(m)(p)

)
for large p. Since E and End E have

filtrations by line bundles, which restrict to filtrations on every infinitesimal neighbourhood
`(m), we compute:

φ
(
E(m), n

)
= φ

(
O`(m)(−j), n

)
+ φ

(
O`(m)(j), n

)
, and

φ
(
End E(m), n

)
= φ

(
O`(m)(−2j), n

)
+ 2φ

(
O`(m) , n

)
+ φ

(
O`(m)(2j), n

)
.

We conclude this proof by computing H0
(
`(m); O(p)

)
. Now we have to consider the spaces

Zk and W1 separately. We pick a chart U with local coordinates (z, u) on Zk and (z, u, v) on
W1, respectively, which transform to (z−1, zku) and (z−1, zu, zv).

On `(m) ⊂ Zk, a section a ∈ O(p)(U) is a function a(z, u) =
∑m
r=0

∑∞
s=0 arsz

sur such that∑
r,s arsz

s−pur is holomorphic in (z−1, zku), i.e. s− p ≤ kr. Thus

a(z, u) =
m∑
r=0

kr+p∑
s=0

arsz
sur ,

which has 1
2 (m+ 1)(km+ 2 + 2p) =: φO(p) coefficients.

On `(m) ⊂ W1, a section a ∈ O(p)(U) is a(z, u, v) =
∑m
t=0

∑m−t
r=0

∑∞
s=0 atrsz

survt such that∑
t,r,s atrsz

s−purvt is holomorphic in (z−1, zu, zv), i.e. s− p ≤ r + t. Thus

a(z, u, v) =
m∑
t=0

m−t∑
r=0

r+t+p∑
s=0

atrsz
survt ,

which has 1
6 (m+ 2)(m+ 1)(2m+ 3p+ 3) =: φ

(
O, p

)
coefficients.

Putting it all together, we have

φ
(
E(m), n

)
= φ

(
O,−j + n

)
+ φ

(
O, j + n

)
,

φ
(
End E(m), n

)
= φ

(
O,−2j + n

)
+ 2φ

(
O, n

)
+ φ

(
O, 2j + n

)
,

which gives the desired functions. �

3.1. Examples of invariants. To make the notion of the numbers we defined above more
concrete, we tabulate examples for the two bundles E = O(−3) ⊕ O(3) (the split bundle of
splitting type 3) and G, the “most generic” bundle of splitting type 3 (which has the lowest
invariants among all bundles of splitting type 3), on the spaces Z1, Z2, Z3 and W1; see Table 1.
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4. Surfaces

Let Zk := Tot
(
OP1(−k)

)
and let E be a rank-2 bundle on Zk with c1(E) = 0 and splitting

type j. Then E is determined by an element p ∈ Ext1
(
O(j),O(−j)

)
as in (3.4). The direct

image π∗(E) is a reflexive sheaf on Xk, and there are bounds for its local holomorphic Euler
characteristic around the singular point x ∈ Xk in terms of j. An efficient algorithm to compute
w,h and χ is given in http://www.maths.ed.ac.uk/~s0571100/Instanton/, hence we can
explicitly calculate the values of these numerical invariants for any such bundle E. We present
here a useful existence result.

Lemma 4.1. Let E be a rank-2 bundle over Zk, k > 1, with c1(E) = 0 and splitting type j < k.
Then

χ(x, π∗E) = j − 1 .

Proof. By [G, Theorem 3.3] it follows that if j < k then E ∼= OZk
(j)⊕OZk

(−j). By definition,
χ(x, π∗E) = w(E) + h(E). Direct computation (see [BGK1]) then shows that w(E) = 0 and
h(E) = j − 1. �

In fact, we can say a lot more.

Lemma 4.2. [BGK1, Corollary 2.18] Let E be a rank-2 bundle over Zk, k > 1, with splitting
type j > 0. Set j = qk + r with 0 ≤ r < q. The following bounds are sharp:

j − 1 ≤ χ(x, π∗E) ≤

{
q2k + (2q + 1)r − 1 if 1 ≤ r < k ,
q2k if r = 0 .

Remark 4.3. Note that every bundle that satisfies the conditions of Lemma 4.1 is split, whereas
in general there are many distinct isomorphism classes of bundles, which attain a whole range of
numerical invariants. The lower bound in Lemma 4.2 is attained by a class of generic bundles,
while the upper bound is obtained by the split bundle of splitting type j, and moreover, the
split bundle is the only bundle to attain the bound when r = 0.

These two lemmas directly imply the following existence result.

Theorem 4.4. Let Mn(Xk) be the moduli of reflexive sheaves on Xk with local holomorphic
Euler characteristic equal to n. Then for all n ≥ 0, Mn(Xk) is non-empty.

4.1. Applications to physics. To illustrate applications to physics, we mention some results
on the existence of instantons. We stress that this particular instance of gaps on instantons
charges presented below was completely new to physicists. In fact, there was a folklore belief
that 1-instantons are always the most common, and that higher instantons of charge k should
decay to k instantons of charge 1 over time. Our results showed that over the spaces Zk with
k ≥ 3 there do not exist any 1-instantons, nevertheless higher charge instantons do exist (of
course we mean mathematical existence proofs).

In [GKM, Proposition 54] we studied the Kobayashi–Hitchin correspondence for the spaces
Zk: We showed that an SU(2)-instanton on Zk of charge n corresponds to a holomorphic SL(2)-
bundle E on Zk with χ(`, E) = n together with a trivialization of E|Z◦

k
, where Z◦k := Zk − `.

A simple observation [GKM, Proposition 4.1] shows that there exists a trivialization of E|Z◦
k

if
and only if n = 0 mod k. This restricts the splitting type of an instanton bundle over Zk to
be of the form nk and lead us to the following existence/non-existence result:

Proposition 4.5. [GKM, Theorem 6.8] The minimal local charge of a non-trivial SU(2)-
instanton on Zk is χmin

k = k − 1. The local moduli space of (unframed) instantons on Zk with
fixed local charge χmin

k has dimension k − 2.

http://www.maths.ed.ac.uk/~s0571100/Instanton/
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This result shows a straightforward passage from the algebraic geometry of bundles on sur-
faces to meaningful mathematical physics. Similar results for Calabi–Yau threefolds promise
to have exciting interpretations in string theory and physics, whenever the mathematical back-
ground is constructed.

Remark 4.6. (Gaps of instanton charges) The non-existence of instantons with certain local
charges on the spaces Zk for k > 2 is in stark contrast with what happens in the case k = 1,
where there is no gap [BG, Theorem 0.2].

Open Question 4.7. Theorem 4.2 gives sharp bounds for χ – are the intermediate values
achieved? Given an integer α such that j − 1 < α < q2k, does there exist an instanton bundle
on Zk with splitting type j and χ = α? We have a positive answer for analogous question when
k = 1, all other cases are open.

We illustrate also an application to topology:

Theorem 4.8. [BGK1, Theorem 4.15] If j = qk for some q ∈ N, then the pair (w,h) stratifies
instanton moduli stacks Mj,k into Hausdorff components.

Open Question 4.9. Find invariants that stratify the moduli stacks Mj,k in the case j = nk+r
with r 6= 0 mod k. We know that the pair (w,h) does not provide a fine enough invariant to
stratify the moduli stacks in these cases. Thus, some extra numerical invariant is needed. At
the moment the authors are completely unaware of any suitable candidate.

We find it completely surprising that the case r = 0, whose physics interpretation is known,
turned out to be much simpler to solve. From a topological point of view one should of course
have Hausdorff stratifications for the moduli stacks in all cases.

5. Threefolds

Consider a smooth threefold W containing a line ` ∼= P1. We will focus on the Calabi-Yau
cases

Wi := Tot(OP1(−i)⊕OP1(i− 2) for i = 1, 2, 3.
The existence of a contraction of ` imposes heavy restrictions on the normal bundle [Jim],
namely N`/W must be isomorphic to one of

(a) OP1(−1)⊕OP1(−1) , (b) OP1(−2)⊕OP1(0) , or (c) OP1(−3)⊕OP1(+1) .

Conversely, Jiménez states that if P1 ∼= ` ⊂ W is any subspace of a smooth threefold W such
that N`/W is isomorphic to one of the above, then:

• in (a) ` always contracts,
• in (b) either ` contracts or it moves, and
• in case (c) there exists an example in which ` does not contract nor does any multiple

(i.e. any scheme supported on `) move.
W1 is the space appearing in the basic flop. Let X be the cone over the ordinary double

point defined by the equation xy − zw = 0 on C4. The basic flop is described by the diagram:

(5.1)

W

W+
1W−1

X

p2

  A
AA

AA
A

p1

~~}}
}}

}}

π1   A
AA

AA
A

π2~~}}
}}

}}
//_ _ __ _ _

��
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Here W := Wx,y,z,w is the blow-up of X at the vertex x = y = z = w = 0, W−1 := Zx,z is
the small blow-up of X along x = z = 0 and W+

1 := Zy,w is the small blow-up of X along
y = w = 0. The basic flop is the rational map from W− to W+.

In W2
∼= Z2×C the zero section does not contract to a point (so it must be able to move), but

it is possible to contract it partially and obtain a singular family X2×C, where X2 is the surface
containing an ordinary double-point singularity defined by xy − z2 = 0 in C3. Holomorphic
bundles on W2 have infinite local holomorphic Euler characteristic, but the restriction E|Z2×{0}
has well-defined and finite width and height. Note that in contrast to W1, there are strictly
holomorphic (non-algebraic) bundles on W2, although every rank-2 bundle on W2 is still an
extension of line bundles.

In W3 not even a partial contraction of the zero section is possible. Nevertheless we can still
calculate the width and height of the restriction E|Z3 of a bundle E to a subsurface Z3 ↪→W3.
Again, on W3 there are strictly holomorphic (non-algebraic) bundles, and moreover, there are
(many) rank-2 bundles which are not extensions of line bundles.

5.1. Bounds and generating functions. We can compute the invariants w(E), h(E) and
h1(End E) directly and algorithmically. We have an implementation of each of the algorithms
for the commutative algebra software Macaulay 2, which led us to discover several formulae for
the bounds of these invariants. Bounds for the local holomorphic Euler characteristic χ = w+h
on surfaces were presented in Section 4; now we turn to the flop space W1, were by Lemma 3.3,
we have χ = h.

Theorem 5.1. For every rank-2 bundle E on W1 with c1(E) = 0 and splitting type j, the
following bounds are sharp:

j − 1 ≤ χ(`, E) = h(E) ≤ (j2 + j)(j − 1)/6 .

Proof. The lower bound is attained by a class of generic bundles, and the upper bound by the
split bundle O(−j) ⊕ O(j). This can be seen by direct computation as explained in [BGK1]
and [Kö]. �

We also have a concise expression for the numbers h1(End) of the extremal cases, that is
generic and the split bundles of splitting type j.

Definition 5.2. A power series of the form g(z) =
∑∞
j=0 ajz

j is called a generating function

for the sequence (aj)∞j=0. Hence, aj =
1
j!
djg

dzj

∣∣∣
z=0

.

Set aX,Ej := h1(X; End E). Then if the base space is X = Zk or W1 and the bundle E over
X is either split or generic of splitting type j, we have generating functions for aX,Ej , as shown
in Table 2. Since the generating function of a sum of two sequences is the sum of the generating
functions, we can easily deduce from this the generating functions for ∆0 and ∆1. We spell out
the inequalities.

Theorem 5.3. For every rank-2 bundle E on W1 with c1(E) = 0 and splitting type j, the
following bounds are sharp:

(j3 + 3j2 − j)/3 ≤ h1(W1; End E) ≤ (4j3 − j)/3

Proof. The lower bound is attained by a generic bundle and the upper bound by the split
bundle, the values are found by direct computation. �
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Space Split bundle Ej Generic bundle Gj

Zk, k = 2n
−z(zn+1 + zn + z + 1)

(z − 1)2(zk − 1) zk+2 − z3 − z2 − z
(z − 1)2(zk − 1)

Zk, k = 2n+ 1
−z(2zn+1 + z + 1)

(z − 1)2(zk − 1)

W1
z(z2 + 6z + 1)

(z − 1)4
z(−z2 + 2z + 1)

(z − 1)4

Table 2. Generating functions for aX,Ej := h1(X; End E) on various spaces
for the split and the generic bundle of splitting type j (data for Gj only valid
for j ≥ k); the value aX,Ej is the jth coefficient in the Taylor series.

5.2. Moduli of sheaves. We consider sheaves on singular varieties obtained as direct images
of bundles on Wi. First we study such bundles and their moduli. The topological structure of
these moduli is not yet well understood. Most numerical invariants defined in Section 3 can be
computed over any Wi; however, the invariants ∆0 and ∆1 in (3.5) are infinite on W2 and W3,
so more refined counterparts are required.

Open Question 5.4. Construct a Hausdorff stratification of the moduli stacks Mn(Wi) of
bundles on Wi with c1 = 0 and χ(`, E) = n.

We obtain a partial understanding of these moduli by looking at first-order deformations,
and this will provide enough bundles for an existence theorem of reflexive sheaves on the cor-
responding singular varieties.

Proposition 5.5. (First-order deformations ) Set F := O`(−j)⊕O`(j) with ` ⊂Wi.
(1) For any bundle E on Wi with E|` ∼= F , the space of first-order deformations of G is

isomorphic to Cγ1 , where

γ1 := h1
(
`; End(E|`)⊗ I`

/
I2
`

)
<∞ .

(2) If I`
/
I2
` is ample (i.e. if i = 1), then there exists a vector bundle A on W1 such that

A|` ∼= F .

Proof. The dimension count is standard deformation theory. Existence of extensions to formal
and small analytic neighbourhoods of ` are given by Peternell’s Existence Theorem [Pet]. The
fact that we actually get existence on the entire spaceW1 rather than just a small neighbourhood
of ` is due to the fact that every bundle on W1 is determined by its restriction to a finite
infinitesimal neighborhood of `. �

Corollary 5.6. (Dimension of moduli ) The moduli space of first order deformations of O(j)⊕
O(−j) over Wi modulo holomorphic isomorphisms is isomorphic to P4j−5.

Proof. It is well known that multiplying the extension class by a non-zero constant does not
change the holomorphic type of the underlying bundle. It turns out that on the first formal
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neighborhood this is the only identification. This was proved for surfaces in [BGK1, Theo-
rem 4.9] and for Wi, i = 1, 2, 3 in [Kö]. We can then compute γ1 directly as the dimension of
the first cohomology of End

(
OP1(−j) ⊕ OP1(j)

)
⊗ N∗`/Wi

on P1. The End -bundle splits into a
direct sum of line bundles, and the computation is straightforward. �

If instead of the first-order deformations we wish to consider all deformations, then the
dimension of the deformation space is given by

(5.2) γ :=
∞∑
m=0

h1
(
`; End(E|`)⊗ Symm(I`

/
I2
` )
)

,

which is finite when I`
/
I2
` is ample, but infinite in general. Though the space of deformations

may be infinite, it turns out that for a fixed j the moduli space Mn(Wi) of holomorphic bundles
E on Wi with χ(`, E) = n = j − 1 has a Zariski-open set of dimension 4j − 5 consisting of of
first-order deformations of O(j) ⊕ O(−j) (cf. Corollary 5.6). Now, using these moduli for the
case of W1, we obtain sheaves on the singular threefold X appearing on the flop diagram (5.1).

Theorem 5.7. Let X be the singular threefold xy − zw = 0 in C4. For each j ≥ 2 there exists
a (4j − 5)-dimensional family of rank-2 reflexive sheaves on X with local holomorphic Euler
characteristic j − 1.

Proof. These reflexive sheaves are obtained as direct images of generic bundles on W1 with
splitting type (−j, j). Combine Corollary 5.6 with the value of χ found for the generic bundle
as given in Table 2. �

For the case of j = 0 or 1 our methods give only the direct images of the split bundles O⊕O
and O(1)⊕O(−1), both have χ = 0.

We stop short of stating a similar theorem for the singular spaces obtained by partial con-
tractions on Wi with i = 2, 3 because strictly speaking the definition of local Euler characteristic
was given for isolated singularities. We do obtain existence of reflexive sheaves on those spaces,
but we do not yet have a good feel for what would be the correct numerical numerical invariants
to use.

Open Question 5.8. Describe the full moduli of reflexive rank-2 sheaves on W1 with c1 = 0
and χ = n, that is, include all sheaves that do not occur as direct images of bundles on W1.

Open Question 5.9. Describe moduli of sheaves with fixed numerical invariants on germs of
singularities.

The latter is of course a very big question, actually infinitely many open questions, starting
with the definition of the correct invariants up to their computation and then construction of
moduli. It is certainly an entire research project for a whole group of singularists. We hope
some singularists get inspired to work on these questions.
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[Kö] T. Köppe, Ph. D. thesis, University of Edinburgh (2010).

[MNOP] D. Maulik, N. Nekrasov, A. Okounkov, R. Pandharipande, Gromov-Witten theory and Donaldson-

Thomas theory I., Compos. Math. 142 (2006), no. 5, 1263–1285.
[Pet] T. Peternell, Vektorraumbündel in der Nähe von exzeptionellen Unterräumen – das Modulproblem, J.

Reine Angew. Math. 336 (1982), 110–123.

School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s
Buildings, Mayfield Road, Edinburgh, EH9 3JZ, United Kingdom

E-mail address: Elizabeth.Gasparim@ed.ac.uk

E-mail address: t.koeppe@ed.ac.uk


	1. Motivation
	Acknowledgements
	2. Main Results
	3. Numerical Invariants
	3.1. Examples of invariants

	4. Surfaces
	4.1. Applications to physics

	5. Threefolds
	5.1. Bounds and generating functions
	5.2. Moduli of sheaves

	References

