
The Atiyah–Jones conjecture for rational surfaces

Elizabeth Gasparim

We show that if the Atiyah–Jones conjecture holds for a surface X,

then it also holds for the blow-up of X at a point. Since the conjecture
is known to hold for P2 and for ruled surfaces, it follows that the
conjecture is true for all rational surfaces.

If P → X is a principal SU(2) bundle over a Riemannian four-manifold
X, with c2(P ) = k > 0, and A is a connection on P , the Yang-Mills functional

YM(A) =

∫
X

||FA||2

is minimal precisely when the curvature FA is anti-self dual, i.e. FA = −∗FA,
in which case A is called an instanton of charge k on X.

Let MIk(X) denote the moduli space of framed instantons on X with
charge k and let Ck(X) denote the space of all framed gauge equivalence
classes of connections on X with charge k. In 1978, Atiyah and Jones [AJ]
conjectured that the inclusion MIk(X) → Ck(X) induces an isomorphism
in homology and homotopy through a range that grows with k. The original
statement of the conjecture was for the case when X is a sphere, but the
question readily generalises for other 4-manifolds.

The stable topology of these moduli spaces was understood in 1984, when
Taubes [Ta] constructed instanton patching maps tk : MIk(X)→MIk+1(X)
and showed that the stable limit lim

k→∞
MIk indeed has the homotopy type

of Ck(X). However, understanding the behaviour of the maps tk at finite
stages is a finer question. Using Taubes’ results, to prove the Atiyah–Jones
conjecture it then suffices to show that the maps tk induce isomorphism in
homology and homotopy through a range.

In 1993, Boyer, Hurtubise, Milgram and Mann [BHMM] proved that the
Atiyah–Jones conjecture holds for the sphere S4 and in 1995, Hurtubise and
Mann [HM] proved that the conjecture is true for ruled surfaces.

In this paper I show that if the Atiyah–Jones conjecture holds true for a
complex surface X then it also holds for the surface X̃ obtained by blowing-
up X at a point. In particular, it follows that the conjecture holds true for
all rational surfaces.
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Kobayashi and Hitchin gave a one-to-one correspondence between instan-
tons on a topological bundle E over X and holomorphic structures on E, see
[LT]. Using this correspondence I translate the Atiyah–Jones conjecture into
the language of holomorphic bundles and compare the topologies of the mod-
uli spaces Mk(X) and Mk(X̃) of stable holomorphic bundles on X, resp. X̃,
having c1 = 0 and c2 = k. More precisely, I will consider slightly enlarged
moduli spaces Mf

k(X̃) of bundles on X̃ framed near, but not on, the excep-

tional divisor `. That is, we fix a small tubular neighborhood N(`) of ` in X̃
and assign frames on N0 := N(`)− `. Existence of such frames is guarantied

by [G2,Thm. 4.1]. These framed moduli spaces Mf
k(X̃) that are naturally

related to the moduli spaces Mf
k(X) by a holomorphic gluing construction

(Proposition 4.1).
The structure of the proof is the following. First we give a concrete de-

scription of instantons on C̃2 (section 1) and compute its numerical invariants

(section 2). We then study moduli spaces Mk(X̃) of instantons or equiva-

lently stable bundles on X̃, with respect to a polarisation L̃ = NL− ` where
L is a polarisation on X. We show that removing the singular points of this
moduli space does not affect homology in a range sufficient to our calcula-
tions and thereafter work only with its smooth points. Moreover, the direct
image of a stable bundle might yield an unstable bundle, which does not cor-
respond to an instanton on X. We show that removing such unstable bundles
from Mk(X) does not affect our homology calculations either (section 3).

We show that any framed instanton on X̃ is uniquely determined by holo-

morphic patching of a framed instanton onX and an instanton on C̃2 (section
4). We define framed moduli spaces (section 5) and then prove that the local

moduli space N f
i of (framed) instantons on C̃2 with charge i is a smooth

complex manifold (section 6). As a consequence we have stratifications

Mf
k(X̃) '

k⋃
i=0

Mf
k−i(X)×N f

i .

We prove that the map Mf
k(X̃)→Mf

k+1(X̃) obtained by translating Taubes’
map to bundles via Kobayashi–Hitchin correspondence is homotopic equiv-
alent to a map that preserves the stratifications (section 7). Using Leray

spectral sequences, we then show that Atiyah–Jones conjecture for X̃ follows
from the corresponding statement for X.
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1. Moduli of bundles on C̃2 with fixed splitting type
Let π : X̃ → X be the blow-up of a point x on a compact surfaceX and let

` be the exceptional divisor. In this paper all bundles have rank 2 and c1 = 0.
Given a bundle E over X we pull it back to X̃ and then modify it by gluing
in new data near the exceptional divisor to construct a bundle Ẽ satisfying
Ẽ| eX−` ' E|X−x. The difference of Chern classes c2(Ẽ)− c2(E) depends only

on the restriction of Ẽ to a small neighborhood N(`) of `. To begin with,
suppose that N(`) is isomorphic to the blow-up of C2 at the origin, denoted

C̃2. Given a rank two bundle V on C̃2 with vanishing first Chern class, there
exists an integer j ≥ 0 determined by the restriction of V to the exceptional
divisor, such that V |` ' OP1(j)⊕OP1(−j). This j is called the splitting type

of the bundle. We denote by OfC2(j) the unique line bundle on C̃2 having
first Chern class j, that is, the pull back of OP1(j). We choose canonical
coordinates for N(`) = U ∪ V, where U ' C2 has coordinates (z, u) and
V ' C2 has coordinates (ξ, v) with (ξ, v) = (z−1, zu) in U ∩V ' (C−0)×C.

Theorem [G3] Every holomorphic rank two bundle V over C̃2 with vanishing
first Chern class and splitting type j is an algebraic extension of the form

0→ OfC2(−j)→ V → OfC2(j)→ 0

and the extension class can be represented in canonical coordinates by a poly-
nomial of the form

p =

2j−2∑
i=1

j−1∑
l=i−j+1

pilz
lui.

It follows that the local (= over N(`)) moduli problem can be studied
by considering extensions of line bundles modulo bundle isomorphism, even
though this is definitely not the case for bundles on the compact surface X̃.
The fact that V is determined by an extension of degree 2j−2 implies that V
is determined over N(`) by its restriction to the 2j−2nd formal neighborhood

of the exceptional divisor. Hence, our assumption that N(`) ' C̃2 is not
restrictive. Consider the quotient space

Mj : = {bundles on C̃2 with splitting type j}/ ∼,
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where ∼ denotes bundle isomorphism. Mj is topologized as follows: In
canonical coordinates, the extension class is expressed by the complex poly-
nomial p with n = 2j(j + 1) coefficients as in Theorem [G3]. In such canoni-
cal coordinates, elements ofMj are represented by transition matrices of the
form (

zj p
0 z−j

)
. (1)

We set p ∼ p′ if the corresponding bundles are holomorphically equivalent.
This construction identifiesMj to a quotient of Cn under a group action and
endowsMj with the structure of a quotient stack. For more on the structure
ofMj see [G3] and [G5]. The stackMj has a corse moduli space that can be
decomposed into Hausdorff strata using the instanton numerical invariants,
see [BG2]. To study the moduli problem we calculate numerical invariants.

2. Computation of local numerical invariants
In §1 we saw that an element V ∈Mj is determined by its splitting type

j and extension class p. We write V = V (j, p). It is important to note that
the bundle V is trivializable on the complement of `.

Lemma [G2] Every holomorphic bundle on C̃2 with vanishing first Chern

class is trivial on C̃2 minus the exceptional divisor.

It follows that the local bundle V (j, p) can be glued to any bundle E pulled

back from X to form a new bundle Ẽ on X̃. We also note that the topology of
Ẽ does not depend on the attaching map. In fact, the attaching is given by a
holomorphic map ψ : C2−{0} → Sl(2,C). By Hartog’s theorem ψ extends to
the origin, and therefore is homotopic to the identity; thus not contributing
to the Chern numbers of Ẽ. Hence 2 sets of data (E, j, p, ψ) and (E, j, p, ψ′)
determine the same topological bundle, although in general they determine
distinct holomorphic bundles.

Lemma [G4] Every holomorphic rank two bundle Ẽ on X̃ with c1(Ẽ) = 0 is
topologically determined by a triple (E, j, p) where E is a bundle over X, j
is a non-negative integer and p is a polynomial.

Here E = π∗(Ẽ)∨∨ and the Chern class difference c = c2(Ẽ)− c2(E) depends
only on the local data V (j, p).

Definition 2.1 We call c the (local) charge of the bundle Ẽ near the excep-
tional divisor. When considering the local situation, we also refer to c as the
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(local) charge of V.

The terminology comes from instanton moduli spaces, where c represents
the change in topological charge of the instanton on X̃ given by the patching
of V (j, p). Friedman and Morgan [FM] gave the bounds j ≤ c2(Ẽ)− c2(E) ≤
j2, and we proved sharpness.

Theorem [G1] The bounds j ≤ c2(Ẽ)− c2(E) ≤ j2 are sharp.

In [BG1] we used elementary transformations to show that all intermedi-
ate values occur. The following result implies non-emptiness of the strata
appearing in the stratification in §7.

Theorem [BG1] For every integer k satisfying j ≤ k ≤ j2 there is a

(semistable) holomorphic bundle on X̃ with splitting type j and such that

c2(Ẽ)− c2(E) = k.

In section 7 we use two finer numerical invariants, defined as follows. An
application of Riemann–Roch ( [FM], p. 366) gives

c = c2(Ẽ)− c2(E) = l(R1π∗Ẽ) + l(Q), (2)

where Q is the skyscraper sheaf defined by the exact sequence

0→ π∗(Ẽ)→ π∗(Ẽ)∨∨ → Q→ 0,

and l denotes length. The pair of local analytic invariants l(Q) and l(R1π∗Ẽ)
gives strictly finer information than the local charge c, and has interesting
properties such as:

Theorem [BG2]The pair of numerical invariants l(Q) and l(R1π∗Ẽ) gives
the coarsest stratification of Mj into maximal Hausdorff components.

Sharp bounds and nonemptiness of intermediate strata are given by the fol-
lowing results.

Theorem[G2]Let j > 0 be the splitting type of E, then the following bounds
are sharp

j − 1 ≤ l(R1π∗(E)) ≤ j(j − 1)/2

and
1 ≤ l(Q) ≤ j(j + 1)/2.
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The upper bounds occur only at the split bundle. If j = 0 then both invariants
are zero.

Theorem[BG1]For every pair of integers (w, h) satisfying j−1 ≤ h ≤ j(j−
1)/2 and 1 ≤ w ≤ j(j + 1)/2 with j ≥ 0 there exists a rank 2 vector bundle

E on C̃2 with splitting type j having numerical invariants l(R1π∗(E)) = h
and l(Q) = w.

Non-emptiness of intermediate strata is needed for the proof of Lemma
7.3. The remainder of this section gives some examples of how these in-
variants are calculated. Other examples of calculations of these invariants
appear in [G1] and [BG2]. In [GS] a Macaulay2 program that calculates both

invariants is given, and the following simple formula for l(R1π∗Ẽ) is proven.

Theorem [GS] Let m denote the largest power of u dividing p, and suppose

m > 0. If Ẽ is the bundle defined by data (E, j, p, φ), then

l(R1π∗Ẽ) =

(
j
2

)
−

(
j −m

2

)
.

The following example illustrates a computation of l(Q).

Example 2.2 Let E be given by data (j, znu);n ≥ 1. We show that l(Q) =(
n
2

)
, it then follows from theorem [GS] and equality (2) that the charge is

c(E) = l(Q) + l(R1π∗Ẽ) =

(
n
2

)
+

(
j
2

)
−

(
j − 1

2

)
=

(
n
2

)
+ j.

We use the method of [BG2] section 6.2. Let M = (π∗E)∧0 denote the
completion of the stalk (π∗E)0. Let ρ denote the natural inclusion of M into
its double dual ρ : M ↪→ M∨∨. We want to compute l(Q) = dim coker(ρ).
By the theorem on formal functions

M ' lim
←−

H0(`n, Ṽ |`n),

where `n denotes the n−th infinitesimal neighborhood of `. There are simpli-
fications that make it easy to calculate M, (cf. [BG2] or [G1]). So, to deter-

mine M it suffices to calculate H0(`2j−2, Ṽ |`2j−2), and the relations among its
generators under the action of O∧0 (' C[[x, y]]). In this example, E is given
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by transition matrix
(

zj znu

0 zj

)
. We find that M = C[[x, y]]〈β0, β1, · · · , βn, γ〉

where, for 1 ≤ i ≤ n,

βi =

(
−ziu
zj−n+i

)
, γ =

(
0

un−1

)
with relations

xβi − yβi−1 = 0.

Consequently, M∨ = 〈B,C〉 is free on the generators

B :

{
βi → xiyn−i

γ → 0
C :

{
βi → 0
γ → 1

.

M∨∨ = 〈B, C〉 is free on the generators

B :

{
B → 1
C → 0

C :

{
B → 0
C → 1

.

The inclusion into the bidual ρ : M → M∨∨, takes x into evaluation at x,
therefore

ρ :

{
βi → xiyn−iB
γ → C

and coker(ρ) = 〈xiyn−i−1B; 0 ≤ i ≤ n〉. We conclude that

l(Q) = dim coker(ρ) =

(
n

2

)
.

3. Moduli of bundles on X̃
For the moduli problem on X̃ we need stability conditions. If L is an

ample divisor on X then, for large N, the divisor L̃ = NL − ` is ample on
X̃. We fix, once and for all, polarisations L and L̃ on X and X̃ respectively.
For a polarised surface Y, the notation Mk(Y ) stands for moduli of rank 2
bundles on Y having c1 = 0, c2 = k and slope stable with respect to the
fixed polarisation. If E is L-stable on X, then π∗(E) is L̃-stable on X̃ [FM,
Thm. 6.5]. Hence, the pull back map induces an inclusion of moduli spaces

Mk(X) ↪→Mk(X̃).
Our objective is to show that given a map Mk(X)→Mk+1(X) inducing

a homology equivalence through a range, there is a map Mk(X̃)→Mk+1(X̃)
inducing a homology equivalence through a comparable range, and that both
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ranges go to ∞ with k. Given that the homology equivalence for the case of
X = P2 holds up to dimension bk/2c− 1, we expect to obtain an equivalence
range at best equal to this one. From here on, we are free to modify Mk(X)

and Mk(X̃) in any way that does not change topology up to dimension
k/2 = c2/2. Firstly, we remove singularities of the moduli spaces; secondly,
we remove semistable bundles on Mi(X) that are not stable.

3.1 Removing singularities
We remove the singular points of the moduli spaces, in order to work

only with smooth manifolds. We use the following results of Kirwan and
Donaldson.

Theorem ([Ki], Cor. 5.4) Let X be a quasi-projective variety and m a non-
negative integer such that every x0 ∈ X has a neighborhood in X isomorphic
to

{x ∈ CN |f1(x) = · · · = fM(x) = 0}
for some integers N, M, and holomorphic functions fi depending on x0 with
M ≤ m. If Y is a closed subvariety of codimension k in X, then for q < k−m,

Hq(X − Y,Z) ' Hq(X,Z).

Given a complex surface S with polarisation H, let Σk ⊂Mk(S) denote the
algebraic subvariety representing bundles E with H2(End0E) 6= 0. A local
model of the moduli space is determined by the kernel of the Kuranishi map
Sym2H1(End0E) → H2(End0E) parameterising small deformations of E.
In case H2(End0E) = 0, small deformations of E are unobstructed and E
is a smooth point of the moduli space. Therefore, singular points satisfy
H2(End0E) 6= 0 and the singular part of Mk is contained in Σk.

Theorem ([Do], Thm. 5.8) There are constants a, b depending only on S
and the ray spanned by H in H2(S) such that:

dimCΣk ≤ a+ b
√
k + 3k.

Proposition 3.1 Removing the singularity set Sing of Mk(S) does not
change homology in dimension less than k. That is, for q < k

Hq(Mk(S)) = Hq(Mk(S)− Sing).

Proof. By Kuranishi theory, points E ∈ Mk(S) satisfying H2(End0E) = 0
are smooth points. Therefore, the singularity set of Mk(S) is contained in Σk.
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Moreover, the moduli space is defined on a neighborhood of a singular point
by at most dimH2(End0E) equations. In fact, in the proof of his theorem
cited above, Donaldson shows that dimH2(End0E) ≤ a+b

√
k+3k. Therefore,

using Kirwan’s result we have that Hq(Mk(S)) = Hq(Mk(S) − Sing) for

q < dimMk(S)− 2(a+ b
√
k + 3k) < k.

Henceforth we consider only the smooth part of Mk(X̃), which in what
follows stands for just the set of its smooth points. Similarly, when consid-
ering Mk(X) we will consider only its set of smooth points, keeping in mind
that this does not change the homology up to dimension k.

3.2 Removing unstable bundles
Given an L̃-stable bundle Ẽ, the bundle E = (π∗Ẽ)∨∨ is L-semistable

[FM, Thm. 6.5]. We want to remove the set of strictly semistable bundles
that appear in this process, leaving only stable bundles over X, as these are
the ones corresponding to instantons.

Proposition 3.2 Removing semistable bundles that are not stable does not
change homology in dimension less than 7k − c. That is if Msu denotes the
subset of semistable bundles on X that are not stable, then there is a constant
c depending only on X such that for q < 7k − c

Hq(Mk(X)) = Hq(Mk(X)−Msu
k (X)).

Proof. Let E be a semistable bundle on X that is not stable. Since c1(E) = 0
there is a destabilising (saturated) line bundle L with deg(L) = 0. Hence, E
is an extension

0→ L→ E → F → 0, (3)

where F is a rank 1 torsion free sheaf satisfying F∨∨ = L−1 and fitting into
a short exact sequence

0→ F → F∨∨ → Q→ 0,

with Q supported only at points. Taking Hom(., L) on the short exact se-
quence (3) gives

→ Ext1(Q,L)→ Ext1(F∨∨, L)→ Ext1(F , L)→ Ext2(Q,L)→ Ext2(F∨∨, L)→ .

But, because Q is supported at k = c2(E) points, we have Hom(Q,L) =
Ext1(Q,L) = 0, and Ext2(Q,L) = Ck, and consequently the long exact
sequence becomes
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0→ H1(L2)→ Ext1(F , L)
δ→ Ext2(Q,L) = Ck → H2(L2)→ . (4)

Note that not all sequences of the form (3) result in a bundle E, but as we
only consider bundles, we must identify when the middle term is locally free.

Locally we have a resolution

0→ L→ E → F∨∨ → Q→ 0

0→ O → O2 → O → Q→ 0

and it follows that Q is a local complete intersection. We write Q = O/(p, q)
with p, q ∈ O coprime. Assuming this, we have that Ext1(Q,O) = 0
and Ext2(Q,O) ' Q. The extension (3) has a corresponding class [E] ∈
Ext1(F,L) ' Ext2(Q,L) = Ext2(Q,O)⊗L. In order for E to be a bundle we
need that [E] have a non-zero value at each point in the support of Q. We
have

Ext1(F,L)→ ΓExt1(F,L) = ΓExt2(Q,L) = Ext2(Q,L)

and the map from leftmost to rightmost terms in the above expression is just
the connecting homomorphism δ coming from

0→ F → F∨∨ → Q→ 0.

It follows that the dimension of the set Msu := Mss −Ms of semistable
bundles on X that are not stable is given by

dimMsu
k = dim(δ(Ext1(F , L))× Jac(X))

and using the exact sequence (4) we get

dimMsu
k ≤ k + dim(H1(L2)× Jac(X)).

where c = dim(H1(L2) × Jac(X)) depends only on X. Now apply Kirwan’s
theorem with codimension dimMs

k − dimMsu
k = 8k − (1− b1 + b+)− (k + c)

(singularities were removed in the previous lemma).

Based on the results of this section, we assume in what follows that the
moduli spaces Mi are smooth and contain only stable points. We now proceed
to the study of framed bundles.
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4. Holomorphic instanton patching
In this section we give the detailed construction of holomorphic instanton

patching which gives the following result.

Proposition 4.1 Every (framed) instanton on X̃ is obtained by holomorphic

patching an instanton on X to an instanton on C̃2.

We give the patching in terms of holomorphic bundles, via the Kobayashi–
Hitchin correspondence. For a Kähler surface X, Kobayashi and Hitchin gave
a one-to-one correspondence between irreducible SU(2) instantons of charge
k on X and stable rank 2 holomorphic bundles E on X with c1 = 0 and

c2 = k, see [LT]. For the noncompact surface X = C̃2 this correspondence
takes an instanton to a holomorphic bundle with an added trivialisation at
infinity [Kn]. We show that a framed bundle on X̃ is uniquely determined

by a pair of framed bundles on X and C̃2.

Remark: Note that all gluing maps used here for holomorphic patching
of framed bundles are homotopic to the identity, this is a consequence of
Hartog’s theorem as explained in section 2.

We fix a neighborhood N(`) of the exceptional divisor inside of X̃ and

write X̃ = (X̃ − `) ∪N(`). Set

N0 := N(`)− ` = (X̃ − `) ∩N(`).

The blow-up map gives an isomorphism i1 : X̃ − `→ X −{x}. Based on the
results of §1, we we know that moduli of bundles on N(`) are isomorphic to

moduli of bundle on C̃2. Hence, to simplify the exposition, we can assume

that there is an isomorphism i2 : N(`) → C̃2. Over the intersection N0 we

have isomorphisms N(x)−{x} i1← N0 i2→ C̃2− `, which we still denote by the
same letters i1 and i2. Using this isomorphisms we write framed bundles on

X̃ as pairs of framed bundles on X and C̃2.

Lemma 4.2 There is a one-to-one correspondence between algebraic vector
bundles on X̃ − ` and algebraic vector bundles on X.

Proof. It is trivial that there is a one-to-one correspondence between bundles
on X̃ − ` and bundles on X − {x}, because these are isomorphic surfaces.
If E is an algebraic bundle on X − {x} it extends uniquely to a bundle on
X as follows. One extends E over x as a coherent sheaf E and then taking
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double dual one obtains a reflexive sheaf E∨∨ over X. Since reflexive sheaves
have singularities in codimension 2, it follows that E∨∨ is locally free. We
have E∨∨|X−{x} ' E|X−{x} ' E, so E∨∨ gives the vector bundle extension of
E.

Definitions 4.3

• Let πF : F → Z be a bundle over a surface Z that is trivial over Z0 :=
Z − Y, where Y is a closed submanifold of Z. Given two pairs f =
(f1, f2) : Z0 → π−1

F (Z0) and g = (g1, g2) : Z0 → π−1
F (Z0) of fibrewise

linearly independent holomorphic sections of F |Z0 , we say that f is
equivalent to g (written f ∼ g) if φ := g ◦f−1 : V |Z0 → V |Z0 extends to
a holomorphic map φ : F → F over the entire Z. A frame of F over Z0

is an equivalence class of fibrewise linearly independent holomorphic
sections of F over Z0. The set of such frames

Fram(Z0, F ) := Hol(Z0, SL(2,C))/ ∼

carries the quotient topology.

• A framed bundle Ẽf on X̃ is a pair consisting of a bundle π eE : Ẽ → X̃

together with a frame of Ẽ over N0 := N(`)− `.

• A framed bundle V f on C̃2 is a pair consisting of a bundle πV : V → C̃2

together with a frame of V over C̃2 − `.

• A framed bundle Ef on X is a pair consisting of a bundle E → X
together with a frame of E over N(x)−{x}, where N(x) is a small disc
neighborhood of x. We will always consider N(x) = π eE(N(`)).

Proposition 4.4 An isomorphism class [Ẽf ] of a framed bundle on X̃ is
uniquely determined by a pair of isomorphism classes of framed bundles [Ef ]

on X and [V f ] on C̃2. We write Ẽf = (Ef , V f ).

Proof. By construction Ẽ = Eq(s1,s2)=(t1,t2)
V is made by identifying the bun-

dles as well as the sections over N0, so that the bundles satisfy Ẽ|N0 =

i∗1(E|N(x)−{x}) = i∗2(V |fC2−`
) and the framing (f1, f2) of Ẽ satisfies (f1, f2) =

(s1, s2) ◦ i1 = (t1, t2) ◦ i2.
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Let φ : Ef → E ′f be an isomorphism such that φ ◦ (s1, s2) = (s′1, s
′
2) and

let ξ : V f → V ′f be an isomorphism such that ξ ◦ (t1, t2) = (t′1, t
′
2). We have

the following diagram of bundle maps:

Ẽf | eX−` → Ef φ→ E ′f ← Ẽ ′f | eX−`

↓ π eE ↓ πE ↓ πE′ ↓ πfE′
X̃ − ` i1→ X − {x} = X − {x} i1← X̃ − `

Hence,

Ẽ ′
f
| eX−` = i∗1(E

′f |X−{x}) = i∗1 ◦ φ(Ef |X−{x}) = i∗1 ◦ φ ◦ i1∗(Ẽf | eX−`) (4)

showing that i∗1 ◦ φ ◦ i1∗ is an isomorphism of Ẽ and Ẽ ′ over X̃ − ` such that

φ ◦ (f1, f2) = φ ◦ (s1, s2) ◦ i1 = (s′1, s
′
2) ◦ i1 = (f ′1, f

′
2). (5)

On the other hand we have the second diagram of bundle maps:

Ẽf |N(`) → V f ξ→ V ′f ← Ẽ ′f |N(`)

↓ π eE ↓ πV ↓ πV ′ ↓ πfV ′
N(`)

i2→ C̃2 = C̃2 i2← N(`)

.

Therefore,

Ẽ ′
f
|N(`) = i∗2(V

′f |fC2) = i∗2 ◦ ξ(V f |fC2) = i∗2 ◦ ξ ◦ i2∗(Ẽf |N(`)) (6),

showing that i∗2 ◦ ξ ◦ i2∗ is an isomorphism of Ẽ and Ẽ ′ over N(`) such that

ξ ◦ (f1, f2) = ξ ◦ (t1, t2) ◦ i2 = (t′1, t
′
2) ◦ i2 = (f ′1, f

′
2). (7)

These isomorphisms agree over the intersection N0, in fact, by (4) and (6)

i∗1 ◦ φ ◦ i1∗(Ẽf |N0) = i∗1 ◦ φ(Ef |N(x)) = i∗1(E
′f |N(x)) = i∗2(V

′f |fC2−{0}) =

= i∗2 ◦ ξ(V f |fC2−{0}) = i∗2 ◦ ξ ◦ i2∗(Ẽf |N0)

and moreover they also preserve the framings over the intersection, since over
N0, we have, by (5) and (7)

φ ◦ (f1, f2) = (f ′1, f
′
2) = ξ ◦ (f1, f2).

13



By the gluing lemma this gives an isomorphism over the entire X̃ and we get
Ẽ ′ ' Ẽ.

Note: It is also possible to define framings as being just trivializing sections,
without putting the equivalence relation at first, and later divide by auto-
morphisms of the bundle that preserve the framings. However, we found
it convenient not to carry on too many inequivalent framings, so that the
framed local moduli N f

i remain finite dimensional.

5. Framed moduli space of bundles and connections.
Anti-self-dual connections on a connected sum have been extensively stud-

ied in the literature, cf. [DK,Chap. 7] and [Ta2] for detailed expositions. In
particular, results apply to connections on a blow-up, since differentiably

X̃ ∼ X#CP2. A posteriori, applying the Kobayashi–Hitchin correspondence,
one knows that over Kähler surfaces, the theory of stable bundles must be
completely parallel to the theory of irreducible ASD connections. Adding
frames rigidifies the problem and has the advantage of greatly simplifying
gluing constructions. Note that a framing of a bundle induces a framing of
the corresponding connection.

To relate anti-self-dual connections on X and X̃ one needs some com-
patibility between the metrics g̃ on X̃ and g on X. Since anti-self-duality
is a conformally invariant condition, it suffices to give a conformal metric
g̃ on X̃ such that g̃| eX−` is conformally equivalent to g|X−{x}. Construction
of such conformal metrics is carried out in detail in [TA2, p. 65]. In what
follows we consider fixed such metrics. Our proof of the Atiyah–Jones con-
jecture works for all metrics g̃ on X̃ for which the conjecture holds true for
the corresponding g on X.

We now recall some well known facts about moduli of vector bundles.
Given a C∞ complex vector bundle F on a compact complex surface Z, a
holomorphic structure on F is a ∂̄ operator of type (0, 1) which is integrable,
hence a holomorphic bundle on Z is a pair F = (F, ∂̄); we denote the set of all
these by H. Let G be the group of C∞-automorphisms of F. Then G acts on
H, and ∂̄1 and ∂̄2 are in the same orbit of G if and only if the corresponding
holomorphic bundles (F, ∂̄1) and (F, ∂̄2) are isomorphic. Given a polarisation
H on Z let Hs

k(Z) := Hs(F ) bet the subset of H-stable bundles (having
c1 = 0 and c2 = k); the corresponding moduli space is the quotient Hs

k/G.
By Maruyama’s theorem this moduli space is a quasi projective variety [M].

We fix compatible polarisations L and L̃ = NL− ` on X and X̃ through-

14



out as in section 3. Note that this is equivalent to considering the projective
embeddings determined by L and L̃ and then, regarding X and X̃ with the
corresponding induced Kähler metrics g and g̃ to use stability with respect to
the polarisations given by the Kähler classes. We denote the moduli spaces
of L and L̃ stable bundles with c1 = 0 and c2 = k just by Mk(X) and

Mk(X̃) respectively. Moreover, using the results of section 3, we removed

all singularities, and accordingly we assume that Mk(X̃) and Mk(X) are
smooth.

Frames are added as in definition 4.3, and an isomorphism between framed
bundles (E1, f

1) and (E2, f
2) is an isomorphism φ ∈ G : E1 → E2 taking f 1

to f 2, that is, such that f 2 = f 1 ◦ φ. Hence, the complex gauge group acts
on framed bundles and the framed moduli spaces are obtained as quotient
of such actions. Explicitly, if E and Ẽ having c1 = 0 and c2 = k are the
differentiable supports for our holomorphic bundles over X and X̃, with
G(E) and G(Ẽ) as their groups of automorphisms, then the framed moduli
spaces are:

Definitions 5.1

• Mf
k(X̃) :=

{
(∂̄eE , f) : f ∈ Fram

(
N0, (Ẽ , ∂̄eE)

)}
/G(Ẽ)

• Mf
k(X) :=

{
(∂̄E , f) : f ∈ Fram

(
N(x)− {x}, (E , ∂̄E)

)}
/G(E)

Note that Mf
k(X̃) maps to Mk(X̃), and Mf

k(X) maps to Mk(X) by pro-
jection onto the first coordinate. In section 6, we consider the local moduli
spaces of bundles defined only over a small tubular neighborhood N(`) of the

divisor, or what is equivalent, bundles on C̃2. In 6.1 we explicitly calculate
dimensions of framed local moduli. This clarifies the important point that
the strata appearing in (7) have finite codimension inside the global framed
moduli spaces. An independent calculation of codimensions is given in 7.3
as well.

Remark 5.2 We remark that is it possible to choose framings in a different
way, so that moduli spaces of framed instantons remain finite dimensional. In
fact, by Theorem [G3] bundles on a tubular neighborhood of the exceptional
divisor are completely determined by their restriction to a finite infinitesimal
neighborhood of order 2j − 2. Consequently one could choose framings only
on such finite infinitesimal neighborhoods and work with finite dimensional
framed moduli spaces.

15



6. Local moduli
For the moduli problem we need to consider the spacesN f

i of isomorphism

classes of framed bundles on the neighborhood N(`) ' C̃2 of the exceptional
divisor which have fixed charge i (cf. definition 2.1). We define

N f
i := {framed bundles on N(`) having charge i}/ ∼ .

King [Kn] showed thatN f
i can be identified with the moduli spaceMi(Σ1)

of bundles on the first Hirzebruch surface Σ1 = P(O(1)⊕O) having second
Chern class i, and that are trivial (and framed) over the line at infinity `∞.
Using this identification, we show that Mi(Σ1) is smooth and finite dimen-
sional.
This section contains a series of lemmas, which prove the following result.

Theorem 6.1 N f
i is a smooth complex manifold.

6.1 Dimension of local moduli
Note that bundles on the neighborhood N(`) of the exceptional divisor

are completely determined by a finite infinitesimal neighborhood of `, conse-
quently the extension class and the inequivalent reframings depend only on
a finite number of parameters, hence framed local moduli are finite dimen-
sional.

Proposition 6.2 Let F := (j, p) be a bundle on N(`) with splitting type j
and extensions class p, together with a trivialisation on N0. Suppose m > 0
is the u-multiplicity of p (that is, the largest power of u that divides p). Then
the dimension of the local moduli space at F is m(2j − (m+ 1)/2).

Proof. Following [Kn], we identify N f
c with the moduli space Mc(Σ) of

bundles on the first Hirzebruch surface with c1 = 0 and c2 = c with a fixed
trivialisation at the line at infinity `∞. By [L, Thm. 4.6], the Zariski tangent
space of Mc(Σ) at E is H1(Σ,EndE ⊗OΣ(−`∞)).

We claim that is H1(Σ,EndE ⊗ OΣ(−`∞)) = H1(N(`), EndF ) where
F = E|N(`). Clearly H1(N(`),EndF⊗OΣ(−`∞)) = H1(N(`),EndF ) because
OΣ(−`∞) is trivial over N(`). We now write Σ = N(`) ∪N0 N(`∞) and set
G = EndE ⊗O(−`∞). By Mayer-Vietoris

H0(N(`),G)⊕H0(N(`∞),G)→ H0(N0,G)→ H1(Σ,G)→

→ H1(N(`),G)⊕H1(N(`∞),G)→ H1(N0,G).
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Here G|N(`∞) = O⊕4 ⊗ O(−`∞) and G|N0 = O⊕4. It then follows that the
map H1(N(`∞),G) → H1(N0,G) is an isomorphism, and also the map
H0(N(`),G)→ H0(N0,G) is an isomorphism. The Mayer-Vietoris sequence
becomes

0→ H1(Σ,G)→ H1(N(`),G)→ 0.

It remains to calculate H1((N(`),G) = H1(EndF ). The transition matrix for
EndF in our canonical coordinates is

T =


z2j −pzj pzj −p2

0 1 0 pz−j

0 0 1 −pz−j

0 0 0 z−2j

 .

BecauseOΣ(−`∞) is trivial onN(`) the transition matrix for EndF⊗OΣ(−`∞)
is the same T. Denote by ∼ cohomological equivalence. To compute the H1

suppose σ = (a, b, c, d) is a 1-cocycle. Then it is represented in U ∩ V '
C− {0} × C = {(z 6= 0, u)} in the form

σ =
∞∑
i=0

∞∑
l=−∞


a
b
c
d

 zlui.

Since terms having only positive powers of z are holomorphic in U it follows
that

σ ∼
∞∑
i=0

−1∑
l=−∞


a
b
c
d

 zlui.

Changing coordinates, that is, calculating Tσ, we get the following conditions
for σ to be a coboundary: the expressions

1. z2ja− pzjb+ pzjc− p2d

2. b+ pz−jd

3. c− pz−jd

4. z−2jd
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should be holomorphic in V = {z−1, zu)}. Expressions 2, 3 and 4 contain
no positive powers of z, therefore they are holomorphic in V and impose
no extra conditions on σ. The only condition is then that expression 1 be
holomorphic in V. Set p = ump′, then we need to check which terms in the
expression

z2ja+ ump′zjb+ ump′zjc+ u2mp′2d

are holomorphic in V, where a, b, c, and d are arbitrary holomorphic in z and
u. Choosing b, c, d appropriately we can remove all terms zlui having i ≥ m.
We are let only with

z2ja ∼ z2j

m−1∑
i=0

−1∑
l=−∞

ailz
lui =

m−1∑
i=0

2j−1∑
s=−∞

aisz
sui.

But, since terms having s ≤ i are holomorphic in V, the non-zero cocycles
come only from the terms zsui with s > i, so

z2ja ∼
m−1∑
i=0

2j−1∑
s=i+1

aisz
sui.

Consequently, nontrivial cocycles are represented by sections of the form
σ = (a, 0, 0, 0) where

a ∼
m−1∑
i=0

−1∑
s=i−2j+1

aisz
sui.

There are m(2j − (m+ 1)/2) nontrivial coefficients.

6.2 Smoothness of local moduli.
Lemma 6.3 For all E,E ′ in N f

i , the map

H0(Hom(E,E ′))→ H0(Hom(E|N0 , E ′|N0)

is injective.

Proof. N0 is open in C̃2, hence two holomorphic functions that coincide in
N0 and are globally defined must be equal.

Lemma 6.4 In order to study endomorphisms of a bundle V ∈ Ni it suffices to
choose a fixed transition matrix T for V and then to consider endomorphisms
fixing T.
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Proof. In fact, suppose there is an automorphism φ of V taking T to T̄ .
Then, φ = (X, Y ) is given by a pair of transition matrices X ∈ Γ(U) and
Y ∈ Γ(V ) such that Y TX = T̄ . But, since T and T̄ represent the same
bundle V, there are change of coordinates A ∈ Γ(U) and B ∈ Γ(V ) such that
T = BT̄A. Now define a new endomorphism of V by φ̄ = (XA,BY ), then
φ̄(T ) = BY TXA = BT̄A = T.

We use the canonical form of transition matrix T =
(

zj p

0 z−j

)
as in (1).

Lemma 6.5 Let φ be an automorphism of a framed bundle (V, f) ∈ N f
i . Then

φ|N0 can be written in the form φ(T ) = X−1TX with X ∈ Γ(U0)∩Γ(V0) and
X =

(
a b
0 d

)
.

Proof. That the automorphism can be written as T 7→ X−1TX follows
simply because V is trivial over N0. Suppose X =

(
a b
c d

)
. From the equality

XT = TX we get −z−jc = zjc, which immediately implies that c = 0.

Lemma 6.6 Let φ be an automorphism of a framed bundle (V, f) ∈ N f
i

over N(`) ' C̃2. Then φ can be written in the form φ(T ) = X−1TX with
X =

(
a0 + a b

0 d0 + d

)
where a, b, d ∈ Γ(U0)∩Γ(V0) with a, b and d vanishing over

the exceptional divisor and a0, d0 constants.

Proof. By lemma 6.5 X =
(

a b
0 d

)
over N0 and we must check what are the

possible extensions of X to the full coordinate charts U and V. Let
(

ā b̄
c̄ d̄

)
be a

holomorphic extension of X to the entire U− chart. We claim the extension
is also of the form X =

(
ā b̄
0 d̄

)
. In fact, U ' C2 and c̄ = c = 0 on U0 which is

an open subset of U hence c̄ = 0 everywhere on U. Similarly on V we have
the form X =

(
ᾱ β̄
0 δ̄

)
. Write x̄ = x0(z) + x(z, u) for x ∈ {a, b, d} and write

ȳ = ȳ0(z
−1) + y(z−1, zu) for y = {α, β, δ}. Over the exceptional divisor one

has p = 0 = u and the equality (∗) becomes(
zja0 zjb0
0 z−jd0

)
=

(
zjα0 z−jβ0

0 z−jδ0

)
where a0, b0, d0 are holomorphic in z whereas α0, β0, δ0 are holomorphic in
z−1. It immediately follows that b0 = β0 = 0 and that a0 = α0 and d0 = δ0
are constants.

Lemma 6.7 A framed bundle (V, f) ∈ N f
i has no traceless automorphisms,

unless V splits.
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Proof. The equality trace(λX) = λtrace(X) holds for any X ∈ GL(2,C) and
constant λ. Therefore, the bundle V has traceless GL(2,C) automorphisms if
and only if it has traceless SL(2,C) automorphisms. So, we assume det(X) =
1. Over the exceptional divisor X|` =

(
a0 0
0 d0

)
. Hence aod0 = 1. If trace(X)

is zero, then we also have a0 + d0 = 0. It follows that a0 = ±i. Suppose
a0 = i, the other case is analogous. Since X is traceless, it then follows
that X =

(
i + a b

0 −i− a

)
. On the other hand det(X) = −(i + a)2 = 1 implies

that either a = 0 or a = −2i. Therefore X = ±
(

i b
0 −i

)
. Now the equality

XT = TX gives (
izj ip+ z−jb
0 −iz−j

)
=

(
izj −ip+ zjb
0 −iz−j

)
implying

2ip = (zj − z−j)b.

But b has only positive powers of z, hence the r.h.s. contains powers of z
greater of equal to j whereas the l.h.s. only has powers of z strictly smaller
than j. Hence b = 0 = p. We conclude that the only traceless automorphisms
of (V, f) are multiples of

(
i 0
0 −i.

)
.

Proposition 6.8 Mi(Σ1) is smooth.

Proof. By [L] Theorem 1.1, given the conditions of lemma 6.2 above, Mi(Σ1)
is smooth at E provided that H2(sl(E)⊗OΣ1(−`∞)) = 0, where sl(E) is the
bundle of traceless endomorphisms of E. But lemma 6.7 implies that there
are no traceless endomorphisms of E, unless E splits, in which case sl(E)
is trivial. The same conclusions then holds also for bundles on M(Σ1). By
Serre duality,

H2(sl(E)⊗OΣ1(−`∞)) = H0(sl(E)⊗OΣ1(`∞)⊗K).

Since K ' O(−2f − `− `∞) where f (having f 2 = 0) is the class of the fiber
of Σ1 and `2 = −1. Then OΣ1(`∞)⊗K ' O(−2f − `), and consequently

H0(sl(E)⊗OΣ1(`∞)⊗K) = H0(sl(E)(−2f − `))

which we claim vanishes. In fact, suppose not, then a global section gives is
an injection

0→ O → sl(E)⊗O(−2f − `)
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and a corresponding short exact sequence

0→ O(2f + `)→ sl(E)→ Q→ 0.

Taking cohomology gives

0→ H0(O(2f + `))→ H0(sl(E))→ H0(Q)→

But H0(O(2f + `)) 6= 0 whereas by lemma 6.7 H0(sl(E)) = 0, a contradic-
tion.

7. Proof of the conjecture
We assume that the Atiyah–Jones conjecture holds true for X, that is,

we assume that there exist maps rk : Mf
k(X) → Mf

k+1(X) inducing isomor-

phisms in homology rk∗ : Hq(M
f
k(X)) → Hq(M

f
k+1(X)) for q ≤ bk/2c − c

where c is a constant depending on X.

7.1 Statement of the conjecture
For a 4-manifoldX, letMIk(X) denote the moduli space of framed SU(2)

instantons on E with charge k and let Bε
k(X) denote the space of framed

gauge equivalence classes of connections on X with charge k whose self-dual
part of the curvature has norm less than ε. Given a point x0 ∈ X, by patching
a small instanton on a neighborhood of x0, Taubes [Ta] constructed smooth
maps

tx0
k : MIk(X)→ Bε

k+1(X).

He also constructed strong deformation retracts

τk+1 : Bε
k+1(X)→MIk+1(X).

He then showed that the stable limit lim
k→∞
MIk indeed has the homotopy type

of B(X), the space of framed gauge equivalence classes of connections on E.
Consequently, the Atiyah–Jones conjecture in homology is equivalent to the
statement that the maps ik = τk+1 ◦ tx0

k induce isomorphisms in homology

ik∗ : Hq(MIk(X))→ Hq(MIk+1(X))

through a range q(k) increasing with k.
For a compact Kähler surface Z, we denote by

KX : MIk(Z)→Mk(Z)
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the Kobayashi–Hitchin map given by K(∇ = ∂ + ∂) = ∂, and let HZ := K−1
Z

be the inverse map. These maps induce real analytic isomorphisms of moduli
spaces, cf. [LT]. Using this translation to moduli of bundles, we aim to prove

that Hq(M
f
k(X̃)) = Hq(M

f
k+1(X̃)) for q ≤ bk/2c− c, assuming the analogous

statement is true for X. We now stratify Mf
k(X̃) and show that the composite

tk : Mf
k(X̃)→Mf

k+1(X̃)

given by
tk : = K eX ◦ τk+1 ◦ tex0

k ◦ H eX
is homotopy equivalent to a map that preserves the stratifications.

7.2 Stratifications
We consider stratifications of the moduli spaces which induce filtrations

with an associated Leray spectral sequence. We refer to those as L-stratifications.

Definition A smooth manifold M is L-stratified if there is a decomposition
of M into disjoint submanifolds M(K) such that
(1) The index set K = {K} is finite with a given fixed well ordering ≤ .
(2) If K0 is the smallest element in (K,≤), then M(K0) is an open-dense
subset of M .
(3) For all K ∈ K the union of the submanifolds of the same or smaller order

Z(K) = ∪K′≤KM(K ′)

is an open-dense submanifold of M.
(4) For all K ∈ K the normal bundle, ν(K), of M(K) in M is orientable.

Proposition 7.2 There is an L-stratification of the moduli space of framed
bundles on X̃ as

Mf
k(X̃) '

k⋃
i=0

Mf
k−i(X)×N f

i . (8)

Proof. The existence of the point set decomposition follows directly from
the definition of the Ni together with proposition 4.4. The space Ki =
Mf

k−i(X)×N f
i , having constant Euler characteristic in each factor, is flat as

a family of bundles. Because the moduli of framed stable bundles Mf
k(X̃)
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is fine (cf. [HL, 4.B]) the flat family Mf
k−i(X) × N f

i must be obtained by

pulling back the universal bundle on Mf
k(X̃) after possibly twisting by a line

bundle. But, comparing with the maps appearing in proposition 4.4, shows
that the twisting can chosen to be trivial. Lemma 7.3 below shows that the
inclusion Ki ↪→Mf

k(X̃) is an immersion.

The first stratum K0 = Mf
k(X)×N f

0 equals the set of pull-back bundles

and is dense in Mf
k(X̃). To show this gives an L-stratification we need to prove

that the normal bundle of each stratum Ki = Mf
k−i(X) ×N f

i is orientable.

Using the results from sections 3.1 and 3.2, we may assume that Mf
k(X̃) is

smooth and that Mf
i (X) is smooth and contains only stable bundles. By

theorem 6.1 N f
i is a complex manifold. It then follows that each stratum

Ki is a complex submanifold of Mf
k(X̃) and therefore has orientable normal

bundle. The remaining properties of the L−stratification are shown in the
following lemma.

Lemma 7.3 The inclusion Ki ↪→Mf
k(X̃) is an immersion.

Proof. Let Ẽ = (E, V, φ) be image of the pair ((E, h), (V, g)) where φ = h◦g−1

is the composition of the framings h : N0 → E and g : N0 → V. We want to
show that the map on tangent spaces

TEMf
k−i(X)× TVN f

i → T eEMf
k(X̃)

is injective. Now X = X0 qN(n)−{x} N(x) and we have the exact sequences

0→ H0(N0,EndE)

H0(N(x),EndE)
→ TMf

k−i(X),(E,h) → H1(X,EndE)

and

0→ H0(N0,EndV )

H0(N(`),EndV )
→ TN(`),(V,g) → H1(N(`),EndV ).

Note that, by construction, the moduli of pairs ((E, h), (V, g)) is the same
as the moduli of triples (E, V, φ) plus the moduli of framings, g. But, by

Hartog’s we have that H0(N0,EndE)
H0(N(x),EndE)

= 0, from which it follows that the map
on tangent spaces is injective.

For each 0 ≤ n ≤ k, set Sn = ∪i≥nKi and Zn = Mf
k(X̃) \ Sn.

Lemma 7.4 For all n, Zn is open and dense in Mf
k(X̃). The real codimension

of the stratum Ki in Mf
k(X̃) is at least 2i.
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Proof. By definition Ki = Mf
k−i(X) × N f

i . The first stratum is the set of

pull-back bundles K0 = {π∗(E), E ∈Mf
k(X)} is non-empty we will se below

that it is open and dense in Mf
k(X̃). It follows that S1 = K1 ∪K2 · · · ∪Kk

has (complex) codimension 1, in particular K1 has codimension at least 1.

For F ∈ Mk(X̃), set r(F ) := (R1π∗F )x and q(F ) := ((π∗F )∨∨/π∗F )x

denote the stalks of the first derived image and of the quotient sheaf Q at x;
and consider the sets

Rn := {F ∈Mf
k(X)}, h0(r(F )) ≥ n}

and
Qn := {F ∈Mf

k(X)}, h0(q(F )) ≥ n}.

We consider the morphism f : Mf
k(X) → {x}. Since the target is just a

point, any sheaf on Mf
k(X) is f -flat. Since bundles in Mf

k(X) are framed
stable, by [HL, thm. 4.B.4] we know that there exists a universal sheaf U over
Mf

k(X). Regarding r and h as functions applied to U , it then follows from
Grauert’s semicontinuity theorem [Ha, p. 288] that the functions h0(x, r(U))
and h0(x,h(U)) are upper-semicontinuous. Hence for each n, the sets Rn

and Qn are closed in Mf
k(X).

Now set r0 := r, q0 := q, and for 1 ≤ n ≤ k, set rn := r|Rn−1 and
qn := q|Qn−1 . Repeating the above reasoning for r1 and q1, we get that
S2 = R1 ∪ Q1 (by thm 0.2 in [BG1]) is closed in S1. It follows that the
codimension of K2 in Mf

k(X) is at least 2. Now use induction on n.

7.3 Maps between the spectral sequences
Here we show that the map tk : Mf

k(X̃)→Mf
k+1(X̃) is homotopy equiva-

lent to a map that preserves the stratifications Mf
k(X̃) = ∪Ki and Mf

k+1(X̃) =

∪K ′i where Ki = Mf
k−i(X)×N f

i and K ′i = Mf
k−i+1(X)×N f

i as in (8). Let

d : Mf
k(X̃)→Mf

k(X qf C̃2)

be the map that re-writes a framed bundle Ẽf on X̃ into its two components
of the decomposition d(Ẽf ) = (Ef , V f ) where Ef is a framed bundle on X

and V f is a framed bundle on C̃2.

Remark 7.4: By proposition 4.4, d is a bijection, and the set of pairs
{(Ef , V f )} is given the topology induced by this bijection. In fact, d is just
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fancy way of expressing the identity map in a form that is convenient for our
constructions; in particular, d is a homeomorphism.

We choose a point x0 in X that is far from the point x we blew-up, in
the sense that x0 /∈ π(N(`)) and we set x̃0 = π−1(x0). Let

tx0
k : MIk(X)→ Bε

k+1(X) and tfx0
k : MIk(X̃)→ Bε

k+1(X̃)

denote Taubes patching on a small neighborhood of x0 in X and of x̃0 in X̃
respectively, and let

τk+1 : Bε
k+1(X)→MIk+1(X) and τ̃k+1 : Bε

k+1(X̃)→MIk+1(X̃)

be the corresponding deformation retracts. The idea is that by choosing x
to be far from the exceptional divisor, we keep the patching far from the
exceptional divisor as well. From the point of view of vector bundles, this
implies that we can choose to increase the second Chern class in such a
way that it does not alter the bundle near the divisor. We now make this
statement precise.

Proposition 7.5 The maps tk : Mf
k(X̃) → Mf

k+1(X̃) and rk : Mf
k(X̃) →

Mf
k+1(X̃) given by

tk : = K eX ◦ τk+1 ◦ tex0
k ◦ H eX

and
rk : = d−1 ◦ (KX ,KeC2) ◦ τk+1 ◦ (tx0

k , id) ◦ (HX ,HfC2) ◦ d

are homotopically equivalent. Moreover, the map rk preserves the stratifica-
tion.

Proof. The following diagram summarises the situation

Mf
k( eX)

HfX−→ MIf
k( eX)

t
ex0
k−→ Bε

k+1( eX)
τ̃k+1−→ MIf

k+1( eX)
KfX−→ Mf

k+1( eX)

d ↓ o| o| o| d−1 ↑

Mf
k(X̄)

(HX ,HeC2 )
−→ MIf

k(X̄)
(t

x0
k

,id)
−→ Bε

k+1(X̄)
τk+1−→ MIf

k+1(X̄)
(KX ,KeC2 )
−→ Mf

k+1(X̄)

.

In the second row X̄ stands for X̄ := (X − {x})qi1=i2
C̃2 identified as in

section 4. A bundle on X̄ given by a pair (E, V ) of bundles on X and C̃2

again as in section 4. Note that each of the vertical maps is a bijection. It
is important to keep in mind that all framings are given on open sets, not
just at points. The maps H,K, τ and t are well known to be continuous, cf.
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[LT] and [Ta2]. Note that the homeomorphism d(Ẽf ) = (Ef , V f ) satisfies

E = π∗Ẽ
∨∨ and V ' Ẽ|N(`); in particular, E|N0 ' V |N0 are identified via the

framings (see Remark 7.4), that is, there are isomorphisms of framed bundles

Ef |N0
i1←− Ẽf |N0

i2−→ V f |N0 . (8)

Moreover, HX |N0 takes the ∂̄E operator over N0 to the unique SU(2) con-
nection ∇E on E|N0 having this ∂̄E as its (0, 1) part. Uniqueness is proven as
in [DK, Lemma 2.1.54]. For our purposes it is important to notice that the
proof of this lemma is carried out on local trivialisations, uniqueness being
obtained in each coordinate patch. Explicitly, the matrix of 1-forms ατ

E giving
the partial connection ∂̄E is associated to the connection ∇τ

E = ατ
E − (ατ )∗E.

Similarly, HeC2|N0 takes the ∂̄V operator over N0 to the unique SU(2) Her-
mitian Yang–Mills connection ∇V on V |N0 having this ∂̄V as its (0, 1) part.
The framings on bundles induce framings on the corresponding connections,
and the isomorphisms of framed bundles i1 and i2 in (8) induce isomorphisms
of framed connections

∇f
E|N0

i1←− ∇feE|N0
i2−→ ∇f

V |N0 . (9)

It follows that (HX ,HeC2) is well defined on the moduli space (that is, on
isomorphism classes) and continuous; and we have commutativity of the first
square. A similar reasoning shows commutativity of the last square.

In the second square, we chose tx0
k to be Taubes patching of a nearly anti-

self-dual connection around a point x0 /∈ N(`). Since the patching is a local
operation, we can chose it so that it does not change the connection on N(`),
that is, we may assume that (tx0

k ∇)|N(`) = ∇|N(`) and we can frame (tx0
k ∇)

accordingly over N0. Hence, there is an identification (tx0
k ∇) ' ∇ over N0

via the framings and it follows that (tx0
k , id) is well defined and continuous.

Using the isomorphisms given by the vertical maps, we may consider the
maps t := (tx0

k , id) and t̃ := tex0
k as being both defined on the same spaces

MIf
k(X̃) → Bε

k+1(X̃). For any instanton ∇ ∈ MIk(X̃), the self-dual parts
of the curvatures of t̃(∇) and t(∇) have L2 norm less than ε. Note also that
t and t̃ can be chosen to change the connection only on a small ball U(x0)
around x0. We then use the norm of the curvature to estimate the norm
of the connections over U(x0), as in [DK, §2.3]. This shows that t(∇) and
t̃(∇) are at distance less than 2ε on U(x0) and by construction, they coincide
outside U(x0). It follows that the L2 distance between t and t̃ is less than 2ε.
Choosing ε small enough, this implies that t and t̃ are homotopic.

26



In the third square of our diagram, the maps τk+1 and τ̃k+1 are defor-
mation retractions. Note that the map τk+1 is applied to connections of the

form ∇ ∈ im(tx0
k , id), where ∇ is anti-self-dual over N(`) ' C̃2, and framed

over N0. The point here is to guaranty that the image consists of connec-
tions that are also framed on N0, so the image falls in MIf

k+1(X̄). In fact,
this follows from the definition of τk+1 because this deformation retraction is
constructed via an application of the contraction mapping theorem; conse-
quently, imτk+1 consists of instantons that are also framed on N0. There is
no reason to expect that the vertical isomorphisms make the diagram com-
mutative, because there is no obvious way to compare imτ̃k+1 to imτk+1.
However, the horizontal maps are deformation retractions, and the vertical
maps are isomorphisms, so the third square homotopy commutes; and this is
all we need.

7.6 Proof of AJ for blow-ups
Let Sk denote the Leray spectral sequence associated to the stratification

{Ki} of Mf
k(X̃) and let S′k+1 denote the Leray spectral sequence associated

to the stratification {K ′i} of Mf
k+1(X̃).

Theorem 7.6 The maps tk : Mf
k(X̃) → Mf

k+1(X̃) induce isomorphisms in

homology Hq(M
f
k(X̃))→ Hq(M

f
k+1(X̃)) for q ≤ bk/2c − c.

Proof. By proposition 7.5 we may assume that tk : Mf
k(X̃) → Mf

k+1(X̃) re-
spects the stratifications and therefore induces a map of spectral sequences
tk : Sk → S′k+1. The E1 term of Sk is E1

p,q = Hp(Tν(Kq)), where Tν de-
notes the Thom space of the normal bundle, and the E1 term of S′k+1 is
E1

p,q = Hp(Tν(K
′
q)). By hypothesis Atiyah–Jones holds for X, hence we are

assuming that for each k and for q ≤ bk/2c−c, Hq(M
f
k(X)) = Hq(M

f
k+1(X)).

Consequently

Hq(Ki) = Hq(M
f
k−i(X)×N f

i ) = Hq(M
f
k−i+1(X)×N f

i ) = Hq(K
′
i)

for q ≤ b(k−i)/2c−c. The Thom isomorphism givesH∗(Tν(Ki)) = H∗−τ(Ki)(Ki),
where τ(Ki) is the real codimension of Ki and similarly for K ′i. By lemma
7.4 the real codimension of Ki at least 2i. Therefore

Hq(Tν(Ki)) = Hq(Tν(K
′
i)) for q ≤ b(k − i)/2c − c+ 2i.

The E1 terms are:
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· · · · · · · · ·

H2(TνK0) H2(Tν(K1) H2(Tν(K2) · · ·

H1(TνK0) H1(Tν(K1) H1(Tν(K2) · · ·

H0(TνK0) H0(Tν(K1) H0(Tν(K2) · · ·

Since b(k − i)/2c − c+ 2i ≥ bk/2c − c, we conclude that tk : Sk → S′k+1

induces an isomorphism of E1 terms for all E1
r,s with r + s ≤ bk/2c − c.

Corollary 7.7 The Atiyah–Jones conjecture is true for rational surfaces.

Proof. Every rational surface is obtained by blowing up points on P2 or
on a rational ruled surface, and on these cases the conjecture holds true by
[BHMM] and [HM].
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