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Abstract

We study the local holomorphic Euler characteristic χ
`
x,F

´
of sheaves

near a surface singularity obtained from contracting a line ` inside a
smooth surface Z. We prove non-existence of sheaves with certain pre-
scribed numerical invariants. Non-existence of instantons on Z with cer-
tain charges follows, and we conclude that `2 poses an obstruction to
instanton decay. A Macaulay 2 algorithm to compute χ is made available
at http://www.maths.ed.ac.uk/~s0571100/Instanton/.

1 Introduction

Let σ : (X̃,D)→ (X, x) be a resolution of an isolated quotient singularity. Let F̃
be a reflexive sheaf on X̃, set F := (σ∗F̃)∨∨; notice that there is an embedding
σ∗F̃ ↪→ F . Then the local holomorphic Euler characteristic of F̃ at x is defined
by

χ
(
x, F̃

)
:= χ

(
(X̃,D), F̃

)
:= h0

(
X; F

/
σ∗F̃

)
+

n−1∑
i=1

(−1)i−1h0
(
X;Riσ∗F̃

)
.

(1.1)
For the case when X is an orbifold, Blache [Bl] shows that:

χ
(
X̃, F̃

)
= χ

(
X,F

)
+

∑
x∈Sing X

χ
(
x, F̃

)
. (1.2)

In this paper we consider rational surface singularities obtained by contract-
ing a line ` ∼= P1 with `2 < −1 inside a smooth surface. To calculate χ locally,
it is enough to study sheaves on a small neighbourhood of the singular point, or
on a small neighbourhood of the exceptional set of a resolution. We therefore
consider the spaces Zk := Tot

(
OP1(−k)

)
.

We denote by Xk the space obtained from Zk by contracting the zero-section
` to a point, and we let π : Zk → Xk be the contraction map. Since we are
interested in applications to instantons, we will consider sheaves E over Zk

with c1(E) = 0. Then E|` splits by Grothendieck’s lemma, and there exists an
integer j ≥ 0 called the splitting type of E such that E|` ∼= O(j)⊕O(−j). Set
Zo

k := Zk − `. We make two simple observations about reflexive sheaves on Zk.

1



Proposition 6.7. Let E be a rank-2 reflexive sheaf on Zk with splitting type
≥ k, then χ

(
x,E

)
≥ k − 1.

Proposition 4.1. Let E1 and E2 be sl(2, C)-bundles over Zk with splitting
types j1 and j2, respectively. There exists an isomorphism E1|Zo

k

∼= E2|Zo
k

if
and only if j1 ≡ j2 mod k. In particular, E1 can decay totally over Zk if and
only if j1 ≡ 0 mod k.

This paper consists of applications of the local holomorphic Euler charac-
teristic to problems of existence and decay of instantons. We also discuss the
Kobayashi–Hitchin correspondence over Zk. We obtain, via discussion of the
physical consequences and an ad hoc definition of stability (Definition 5.2), the
following conclusions:

Proposition 5.4. There is a one-to-one correspondence between framed SU(2)-
instantons on Zk with local charge n and framed-stable sl(2, C)-bundles on Zk

with χloc = n.

Corollary 5.5. An sl(2, C)-bundle over Zk represents an instanton if and only
if its splitting type is a multiple of k.

Theorem 6.8. The minimal local charge of a nontrivial SU(2)-instanton on
Zk is χmin

k = k − 1. The local moduli space of (unframed) instantons on Zk

having fixed local charge χmin
k has dimension k − 2.
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memorating Fedya’s 60th birthday and are grateful to Ludmil Katzarkov for
giving us this opportunity.

The first author thanks the hospitality and generous support of the Mathe-
matics Institute of the Universität Münster, where part of this work was carried
out. We thank M. Stillman for assistance with Macaulay 2.

2 Elementary background on instantons

Given a principal SU(2)-bundle P → X over a Riemannian 4-manifold X with
c2(P ) = n > 0, an SU(2)-instanton of charge n on X is a connection A on P
minimising the the Yang–Mills functional

SYM(A) :=
∫

X

‖FA‖2 ,

where FA is the curvature of the connection A. The Yang–Mills equations are
the Euler–Lagrange equations corresponding to the functional SYM.

Being non-linear and of second order, the Yang–Mills equations are quite
difficult to study. Luckily a linearisation can be obtained easily as follows: The
Yang–Mills equation of motion is D(A) ∧ F (A) = 0. But since the Jacobi
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identity D(A) ∧ *F (A) = 0 always holds, any A satisfying *FA = ±FA solves
the Yang–Mills equations of motion. A connection A whose curvature satisfies

*FA = −FA , (ASD)

is called anti-self-dual. Hence, anti-self-dual connections minimise the Yang–
Mills functional. For this reason the ASD equations may be seen as a “linear
version” of the Yang–Mills equations. Subsequently, from the mathematical
point of view, instantons have become synonymous to anti-self-dual connections.

Over a compact Kähler surface X, the Kobayashi–Hitchin correspondence
(see [LT]) provides an interpretation of irreducible SU(2)-instantons of charge n
as stable holomorphic SL(2)-bundles over X with second Chern class c2 = n:{

irreducible SU(2)-instantons
of charge n

}
K.–H.⇐⇒

{
stable SL(2)-bundles

with c2 = n

}
,

∇ = ∂̄ + ∂ ←→ ∂̄ . (2.1)

In particular, when X is a ruled surface, the informal interpretation of instan-
tons as weighted, point-like configurations of concentrated charge has a precise
interpretation in terms of jumping lines: An instanton bundle on a ruled surface
has a generic splitting O(a)⊕O(−a), which is the same for all but finitely many
lines of the ruling, called the jumping lines. In this interpretation, the weight
of the points in the configuration corresponds to the multiplicity of the jumps,
and the topological charge (= the second Chern class) is given as the sum of all
multiplicities.

Multiplicities of jumps on lines having `2 = 0, i.e. on trivial families CP 1×C,
are quite well understood (cf. [BHMM], [HM]). Here we study the behaviour
of instantons around lines with negative self-intersection `2 = −k. The case
k = 1 corresponds to the blow-up of a surface at a point and was studied
in several papers, e.g. [GO], [Ga1], [Kn]. Near a −k-line, with −k < 0, an
instanton has two independent local numerical invariants: the height and the
width (see Definition 2.3), whose sum gives the multiplicity or local charge. The
label “local charge” comes from the translation into algebraic geometry via the
Kobayashi–Hitchin correspondence:

In the first case, let X̃ be a compact complex surface containing a −1-line,
and let π : X̃ → X be the blow-down of ` to a point x0 ∈ X. If E is a bundle
on X̃, then the local second Chern class of E near ` is by definition

cloc
2

(
`, E

)
:= c2

(
E

)
− c2

(
(π∗E)∨∨

)
.

Thus, a local version of the Kobayashi–Hitchin correspondence justifies the ter-
minology { local charge of an

instanton

}
K.–H.⇐⇒

{
local c2 of a bundle

}
.

Still near the −1-line, an application of Hirzebruch–Riemann–Roch gives

cloc
2

(
`, E

)
= h0

(
X; (π∗E)∨∨

/
π∗E

)
+ h0

(
X;R1π∗E

)
, (2.2)
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which by (1.1) is the local holomorphic Euler characteristic of E near `.
However, the analogue of (2.2) for a bundle near a −k-line, where k ≥ 2, is a

more complicated issue, simply because contracting such a line produces a sin-
gularity; and there exist at least three nonequivalent definitions of Chern classes
for singular varieties. To avoid carrying this problem over to instantons, it is
more convenient to simply consider the local holomorphic Euler characteristic,
and set:

Definition 2.3. Let E be an instanton bundle over a smooth surface Z con-
taining a −k line ` and let π : Z → X be map that contracts of ` to a point.
The local charge of E around ` is:

χloc
(
E

)
= χ

(
`, E

)
:= h0

(
X; (π∗E)∨∨

/
π∗E

)
+ h0

(
X;R1π∗E

)
.

The right hand side contains two independent holomorphic invariants:
w(E) := h0

(
X; (π∗E)∨∨

/
π∗E

)
is called the width of the instanton and measures

how far the direct image is from being a bundle;
h(E) := h0

(
X;R1π∗E

)
is called the height of the instanton and measures how

far the bundle is from being a split extension.

From equation (1.2), χ
(
E

)
= χloc

(
E

)
+χ

(
(π∗E)∨∨

)
, so we can say that the

local charge measures the loss of total charge suffered by contracting `.

3 Holomorphic surgery and instanton decay

We first describe informally the ideas behind holomorphic surgery and decay and
then give the precise definitions. A decay of an instanton is a transformation
that lowers the total charge; a local decay around ` is a transformation that keeps
the instanton fixed outside ` but lowers the local charge near `, and consequently
lowers the global charge as well.

When an instanton is represented by a holomorphic bundle E, then holo-
morphic surgery provides a precise way to obtain local decay: If the surface Z
contains a line ` and N = N(`) is a small neighbourhood of ` in the analytic
topology, then lowering the charge of E around ` means to replace E|N by some
E′|N with smaller local charge, while keeping E fixed on Z − `. The outcome is
a new holomorphic bundle which is isomorphic to E over Z − `, but which has
smaller c2.

Remark 3.1. Note that holomorphic surgery takes one instanton bundle to an-
other instanton bundle; that is, the surgery process keeps c1 = 0, and conse-
quently differs from the more familiar process of elementary transformations
(which does not move between instantons).

Definition 3.2. Two instanton bundles E1 and E2 on X that are related by
holomorphic surgery around ` must satisfy E1|X−`

∼= E2|X−` holomorphically.
If in addition c2(E1) > c2(E2), we will say that E1 decays to E2.
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We fix a compact surface Z containing a line ` with `2 = −k, as in the
introduction, with π : Z → X the contraction of `, and a decomposition Z =
(Z−`)∪N(`). We will see in Proposition 5.3 that instantons correspond to bun-
dles that are trivial on Zo := N(`)− ` = (Z − `) ∩N(`). So, instanton bundles
can be given frames on Zo. We will use theses frames (see definition 3.3 below)
in our constructions. Note that (Zk, Zo

k) describes the local situation, whereas
(Z,Zo) describes the global situation on a compact manifold. (Although it is
not true that any 2-dimensional tubular neighbourhood of a −k-line ` is biholo-
morphic to Zk, it is a consequence of [Ga2] that holomorphic bundles on both
N(`) and Zk are completely determined by a finite infinitesimal neighbourhood
of `, so that for the purposes of holomorphic surgery and instanton decay, N(`)
and Zk can be identified.)

Definition 3.3. Let πF : F → Z be a bundle over Z that is trivial over Zo :=
Z − Y . Given two pairs f = (f1, f2) : Zo → π−1

F (Zo) and g = (g1, g2) : Zo →
π−1

F (Zo) of fibrewise linearly independent holomorphic sections of F |Zo , we say
that f is equivalent to g (written f ∼ g) if φ := g ◦ f−1 : V |Zo → V |Zo extends
to a holomorphic map φ : F → F over the entire Z. A frame of F over Zo is
an equivalence class of fibrewise linearly independent holomorphic sections of F
over Zo.

• A framed bundle Ēf on Z is a pair consisting of a bundle πĒ : Ē → Z
together with a frame of Ē over Zo := N(`)− `.

• A framed bundle V f on Zk := Tot
(
OP1(−k)

)
is a pair consisting of a

bundle πV : V → Zk together with a frame of V over Zo
k .

• A framed bundle Ef on X is a pair consisting of a bundle πE : E → X
together with a frame of E over N(x) − {x}, where N(x) is a small disk
neighbourhood of x. We will always take N(x) := π

(
N(`)

)
.

Proposition 3.4. An isomorphism class [Ēf ] of a framed bundle on Z is
uniquely determined by a pair of isomorphism classes of framed bundles [Ef ]
on X and [V f ] on Zk. We write Ēf = (Ef , V f ).

Proof. One needs to observe that any reflexive sheaf on X is completely de-
termined by the complement of the point x, cf. [Ha2, Prop. 1.6]. Hence E =
(π∗Ē)∨∨ is trivial on N(x) and is completely determined by E|X−{x}. The
rest of the proof is just a verification that the framings have been conveniently
defined.

The contraction map gives an isomorphism i1 : Z − ` → X − {x}. Based
on [Ga2] we may assume that there is an isomorphism i2 : N(`) → Zk. These
induce isomorphisms on the deleted neighbourhoods

N(x)− {x} i1←−− Zo i2−−→ Zo
k .

By construction, Ē = Et(s1,s2)=(t1,t2)V is made by identifying the bundles as
well as the sections over Zo, so that the bundles satisfy Ē|Zo = i∗1(E|N(x)−{x}) =
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i∗2(V |Zo
k
), and the framing (f1, f2) of Ē satisfies (f1, f2) = (s1, s2)◦ i1 = (t1, t2)◦

i2.
Let φ : Ef → E′f be an isomorphism such that φ ◦ (s1, s2) = (s′1, s

′
2), and

let ξ : V f → V ′f be an isomorphism such that ξ ◦ (t1, t2) = (t′1, t
′
2). We have

the following diagram of bundle maps:

Ēf |Z−` −−−−→ Ef φ−−−−→ E′f ←−−−− Ē′f |Z−`

πĒ

y πE

y yπE′

yπĒ′

Z − ` −−−−→
i1

X − {x} X − {x} ←−−−−
i1

Z − `

Hence,

Ē′f |Z−` = i∗1(E
′f |X−{x}) = i∗1 ◦ φ (Ef |X−{x}) = i∗1 ◦ φ ◦ i1∗ (Ēf |Z−`) , (3.5)

showing that i∗1 ◦ φ ◦ i1∗ is an isomorphism of Ē and Ē′ over Z − ` such that

φ ◦ (f1, f2) = φ ◦ (s1, s2) ◦ i1 = (s′1, s
′
2) ◦ i1 = (f ′1, f

′
2) . (3.6)

On the other hand we have a second diagram of bundle maps:

Ēf |N(`) −−−−→ V f ξ−−−−→ V ′f ←−−−− Ē′f |N(`)

πĒ

y πV

y yπV ′

yπV̄ ′

N(`) −−−−→
i2

Zk Zk ←−−−−
i2

N(`)

Therefore,

Ē′f |N(`) = i∗2(V
′f |Zk

) = i∗2 ◦ ξ (V f |Zk
) = i∗2 ◦ ξ ◦ i2∗ (Ēf |N(`)) , (3.7)

showing that i∗2 ◦ ξ ◦ i2∗ is an isomorphism of Ē and Ē′ over N(`) such that

ξ ◦ (f1, f2) = ξ ◦ (t1, t2) ◦ i2 = (t′1, t
′
2) ◦ i2 = (f ′1, f

′
2) . (3.8)

These isomorphisms agree over the intersection Zo. In fact, by (3.5) and
(3.7),

i∗1 ◦ φ ◦ i1∗ (Ēf |Zo) = i∗1 ◦ φ (Ef |N(x)) = i∗1(E
′f |N(x))

= i∗2(V
′f |Zk−{0}) = i∗2 ◦ ξ (V f |Zk−{0}) = i∗2 ◦ ξ ◦ i2∗ (Ēf |Zo) ,

and moreover they also preserve the framings over the intersection, since over
Zo we have, by (3.6) and (3.8),

φ ◦ (f1, f2) = (f ′1, f
′
2) = ξ ◦ (f1, f2) .

By the gluing lemma this gives an isomorphism over the entire space X̄, and we
get Ē′ ' Ē.
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Note: Here we have only defined surgery for framed bundles on surfaces. A
similar definition of holomorphic surgery can be given in much greater generality
for decorated bundles on higher-dimensional varieties; for instance, a broader
sense of framing can be used by fixing the isomorphism type of the bundles on
a subvariety.

Using (2.1) we can re-state Proposition 3.4 in terms of instantons:

Proposition 3.9. If ∇ and ∇′ are instantons on Z, with ∇′ obtained from ∇
by local decay, then

global charge(∇′) = global charge(∇)− local charge(∇, `) .

Proof. Just combine Proposition 3.4 and equality (1.2).

4 When is total decay near ` possible?

Consider the questions: Can every bundle decay totally around `, that is, is
every bundle related by holomorphic surgery to a bundle that is trivial around
`? Can decay by 1 always happen, that is can every charge n instanton decay
locally to charge n− 1 ? In the case k = 1 the answers are “yes”, but for k > 2
we will show that the answers to both questions are “no”.

In this section we use the well-known concept of elementary transformations
of Maruyama [M], which we now recall: Let E be a vector bundle over an
algebraic variety W . Choose a line bundle L over a Cartier divisor D ⊂W and
a surjection r : E → L induced by a surjection ρ : E|D → L. Set E′ := ker(r)
and L′ := ker(ρ). Since D is a Cartier divisor, E′ is a vector bundle on W .
By definition E′ is called the vector bundle obtained from E by making the
elementary transformation induced by r, denoted

E′ = ElmL(E) .

The following diagram, called the display of the elementary transformation,
clarifies the situation:

0 0x x
0 −−−−→ L′ −−−−→ E|D

ρ−−−−→ L −−−−→ 0

t

x x ∥∥∥
0 −−−−→ E′ −−−−→ E −−−−→

r
L −−−−→ 0x x

E(−D) E(−D)x x
0 0
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Note that the elementary transformation does not change E outside the divisor,
that is, E|W−D

∼= E′|W−D.

Proposition 4.1. Let E1 and E2 be sl(2, C)-bundles over Zk with splitting types
j1 and j2, respectively. There exists an isomorphism E1|Zo

k

∼= E2|Zo
k

if and only
if j1 ≡ j2 mod k. In particular, E1 can decay totally over Zk if and only if
j1 ≡ 0 mod k.

Proof. We first claim that the bundle O`(−k) is trivial on Zo
k . In fact, if u = 0

is the equation of `, then s(z, u) = u determines a section of O`(−k) that does
not vanish on Zo

k .
If a bundle E over Zk has splitting type j, then by definition, E|` ∼= O`(−j)⊕

O`(j). So there is a surjection ρ : E|` → O`(j). The bundle E′ = ElmO`(j)(E)
splits over ` as O`(−j)⊕O`(j+k). Therefore we can use the surjection ρ : E′|` →
O`(j+k) to perform a second elementary transformation, and we obtain bundle
E′′ = ElmO`(j+k)(E′), which splits over ` as O`(−j)⊕O`(j + 2k) and has first
Chern class 2k. Tensoring by O`(−k) we get back to an sl(2, C)-bundle with
splitting type j + k. Hence, the transformation

Φ(E) = ⊗O(−k) ◦ ElmO`(j+k) ◦ ElmO`(j)(E)

increases the splitting type by k while keeping the isomorphism type of E over
Zo

k . So we need only to analyse bundles with splitting type j < k.
If j = 0, the bundle is globally trivial on Zk. If j 6= 0, then E|Zo

k
induces a

non-zero element on the fundamental group π1(Zo
k) = Z

/
kZ.

One interesting consequence of Proposition 4.1 is that instantons do not
correspond to bundles whose splitting type does not divide k. Consequently,
using the results of the following two sections, we will deduce:

Corollary 4.2. The self-intersection number of ` provides an obstruction to
the existence of instantons with certain prescribed numerical invariants.

In particular, it is not always possible for the local charge to decay by one
unless k = 1 or 2.

Corollary 4.3. The self-intersection number of ` poses an obstruction to in-
stanton decay.

Example 4.4. Here some examples, which will be proved below.

1. There is no nontrivial instanton with local charge ≤ k − 2 over the space
Zk when k > 2.

2. For k ≥ 2, there exist (k−2)-dimensional families of (unframed) instantons
with local charge k − 1 over Zk.
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5 Existence of instantons

In [Ga2] it is shown that every holomorphic bundle on Zk is an algebraic ex-
tension of line bundles. It then follows that any rank-2 bundle E over Zk with
c1(E) = 0 is an extension of the form

0→ O(−j)→ E → O(j)→ 0 .

Thus existence of moduli Mj(k) of bundles with any splitting type j over Zk

is an immediate consequence of the fact that Ext1
(
OZk

(j),OZk
(−j)

)
6= ∅.

Moreover, in [BGK, Theorem 4.2] it is shown that for j > k

dimMj(k) = 2j − k − 2 . (5.1)

Note that dimMj(k) is not the dimension of Ext1
(
OZk

(j),OZk
(−j)

)
as a vector

space, since bundle isomorphisms impose several equivalences; rather it is the
dimension of the dense, open stratum of Mj(k) seen as a variety. Now we
analyse which of these bundles correspond to instantons. Firstly, we look at
them from the point of view of decay, and secondly from the point of view of
differential geometry.

The energy of an instanton on X is given by 1
2g2

∫
X
‖F‖2. The minimum

possible energy of the instanton is bounded from below by the total charge of
the instanton. To see this, note the following inequalities:

0 ≤
∫

X

‖F ± *F‖2 = 2
∫

X

‖F ∧ *F ± F ∧ F‖

Therefore,

1
2g2

∫
X

‖F‖2 =
1

2g2

∫
X

‖F ∧ *F‖ ≥ 1
2g2

∣∣∣∣∫
X

F ∧ F

∣∣∣∣ =
8π2|n|

g2
.

Consequently, the probability of finding an instanton with c2 = n is ∝ e−n.
Arguing from the physical point of view, since systems always tend to go to
their lowest energy state, an instanton with a high charge will prefer to decay to
an instanton of a lower charge unless there is some obstruction to its decay. It
is reasonable to expect that this behaviour holds locally as well. Thus it should
be possible to lower a local charge by a local transformation. Instanton bundles,
therefore, ought to allow for full local decay; combining with Proposition 4.1 this
implies that only bundles which are trivial on Zo

k can correspond to instantons.
Moreover, the finite-energy condition for instantons, viz.

∫
X
‖F‖2 ≤ ∞, requires

that F → 0 at infinity, and accordingly an instanton bundle E on Zk should
be trivial and trivialised at infinity. This requirement in turn fixes boundary
conditions and guarantees that instantons have good gluing properties.

Mathematically, the correct way to decide which bundles correspond to in-
stantons is to go through the Kobayashi–Hitchin correspondence (cf. [LT]).
A unitary, anti-self-dual connection ∇ on a smooth bundle E decomposes as
∇ = ∂ + ∂̄, where ∂̄ is considered as a holomorphic structure on E; and the
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Kobayashi–Hitchin correspondence claims that the map ∇ 7→ ∂̄ is invertible. In
the compact case, this correspondence was proved by Donaldson [D1] for pro-
jective algebraic surfaces, by Uhlenbeck and Yau [UY] for Kähler surfaces, and
by Buchdahl [Bu] for surfaces with a Gauduchon metric. In the non-compact
case, this correspondence was proved by Donaldson [D2] for C2 and by King
[Kn] for C2 blown up at the origin, which in this paper is denoted by Z1. In
the former, instantons on C2 are identified with instantons on CP 2 framed at
a line at infinity; and in the latter framed instantons on Z1 are identified with
instantons on the first Hirzebruch surface Σ1 which are trivial on the line at in-
finity. As in the non-compact cases of C2 and Z1 we identify framed instantons
on Zk with instantons on the kth Hirzebruch surface Σk := P

(
OP1(k) ⊕ OP1

)
trivialised on the line at infinity.

LeBrun [LB1] provided metrics over the spaces Zk that are well suited for in-
stanton problems. He showed that Zk admits a complete, zero scalar curvature,
asymptotically flat Kähler metric g. In particular, this metric is anti-self-dual.
Moreover, he showed that up to multiplication by an overall constant, there is
exactly one such metric g which is SU(2)-invariant. Using this asymptotically
flat metric, triviality at the line at infinity still seems a natural condition to im-
pose. In fact, consider the orbifold Z̄k obtained from Zk by adding one point at
infinity, or equivalently, obtained from Σk by contracting the line at infinity `∞.
Then it follows from [LB2, p. 235] that Z̄k is an ASD conformal orbifold com-
pactification of Zk. This orbifold compactification of Zk has an orbifold twistor
space W , cf. [LB3]. The complex structure on Zk yields a complex surface in
W , and adding the orbifold twistor line at infinity compactifies this surface to
the Hirzebruch surface Σk. Using the Ward correspondence together with Uh-
lenbeck’s removable singularities theorem [U], an L2-instanton on Zk gives rise
to a holomorphic bundle on Σk that is trivial on `∞. So, once again, from this
second point of view we arrive at the conclusion that instanton bundles on Zk

should be the ones that are trivial at infinity. We set the ad hoc definition of
framed stability, cf. Definition 3.3.

Definition 5.2. A rank-2 bundle over Zk is called framed-stable if it is holo-
morphically trivial and framed on Zo

k .

This allows a statement the Kobayashi–Hitchin correspondence on Zk:

Proposition 5.3. There exists a one-to-one correspondence between framed
SU(2)-instantons on Zk with local charge n and framed-stable sl(2, C)-bundles
on Zk with χloc = n.

Schematically,{
SU(2)-instantons on

Zk with local charge n

}
K.–H.⇐⇒

{ stable SL(2)-bundles
on Zk with χloc = n

}
. (5.4)

Corollary 5.5. An sl(2, C)-bundle over Zk represents an instanton if and only
if its splitting type is a multiple of k.
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Proof. By definition an instanton bundle must be trivial at infinity, now apply
Proposition 4.1.

In particular, note that any bundle on Zk with splitting type j 6≡ 0 mod k
does not correspond to an instanton; the physical interpretation of such a bundle
does not seem to be known.

6 Gaps in local charges and moduli

In this section we study gaps in local charges. We show that not all numerically
admissible values of χ occur for instanton bundles when k > 2. Recall that by
Definition 2.3 the local charge is the sum of the width and the height: χloc(E) =
w(E) + h(E) = h0

(
X; (π∗E)∨∨

/
π∗E

)
+ h0

(
X;R1π∗E

)
.

6.1 Direct computation of instanton widths

Results in this section depend on a number of “direct calculations”. We explain
briefly how those are carried out and provide an open computer implementation.
We outline the computer algorithm, following closely the ideas in [GaS] and
keeping to minimal detail. The implementation of the algorithm can be obtained
from http://www.maths.ed.ac.uk/~s0571100/Instanton/. Our language of
choice is Macaulay 2 for its native support of high-level concepts of commutative
algebra (such as modules, generators, cokernels); though conceivably a different
computer algebra software may be used.

Let E → Zk be a holomorphic rank-2 vector bundle over the complex surface
Zk = Tot

(
O(−k)

)
with c1(E) = 0. The canonical coordinates on Zk = U ∪ V

are U = {z, u} and V = {ξ, v} such that ξ = z−1 and v = zku. A holomorphic
bundle E on Zk is algebraic [Ga2]. If the splitting type of E is j, then it can be
expressed by a canonical transition function

T =
(

zj p
0 z−j

)
,

where

p(z, u) =
b 2j−2

k c∑
r=1

j−1∑
s=ki−j+1

prs urzs . (6.1)

The computation of the instanton width is now equivalent to the computa-
tion of the dimension of the cokernel of the natural evaluation map M ↪→M∨∨,
where M is a module that is related to the space of holomorphic sections of
E: Let (a, b) be a generic section of E given over the (z, u)-chart by functions
a, b ∈ C[[z, u]]. This implies that on the other chart, the local section

T

(
a
b

)
=

(
zj a + p b

z−j b

)

11



is holomorphic in (z−1, zk u). Writing a(z, u) = arsu
rzs and b(z, u) = brsu

rzs,
this means that for each fixed index r only a finite number of ars and brs

can be non-zero, and there are relations between the non-zero coefficients of a
and b (unless p ≡ 0). The space of sections of E is thus generated by terms
(urzs, ur′zs′), of which most are multiples or linear combinations of a finite set
of true generators.

For our computation we need to consider generators and relations after con-
tracting the zero-section of Zk to a point, i.e. on the direct image under the
contracting map π : Zk → Xk. Here Xk is the singular surface (smooth only for
k = 1) given in coordinates by S =

{
x0, . . . , xk

}/
(xixi+t − xi+1xi+t−1) with

0 ≤ i ≤ i + t ≤ k + 1, and the map π is given by xi = ziu. The module M is
now the space of sections of E when the relations are expressed in terms of the
xi downstairs, i.e. as an S-module.

Example 6.2. For the first two values of k we have Z1 → X1 = C2 =
{
x0, x1

}
and Z2 → X2 =

{
x0, x1, x2

}/
(x0x2 − x2

1), where u 7→ x0, zu 7→ x1 and z2u 7→
x2.

The first two generators coming from b00 and b01 are β0 = (0, 1) and β1 =
(0, z), respectively, and they are related over S by

x1β0 = x0β1 (on Z1 and Z2), and
x2β0 = x1β1 (on Z2 only).

The concrete case j = k and p(z, u) = zu is worked out in the proof of Theorem
6.8.

Computer algorithm The automatic computation of the instanton width
of a bundle E with c1(E) = 0, splitting type j and extension class p can now
proceed in several stages:

1. (Optional) The extension class p may possibly be reduced to a smaller, co-
homologous class p′ by truncating terms according to (6.1), but care needs
to be taken when u - p. This step is only useful to optimise computation
time, it is not necessary for the algorithm to work.

2. Define a generic section (a, b) with a(z, u) =
∑

r,s arsu
rzs and b(z, u) =∑

r,s brsu
rzs. There exist bounds on r above which all generators corre-

sponding to the ars and brs terms are guaranteed to be multiples (over
S) of the lower generators, so these are genuine polynomials. Moreover, b
can and must be chosen so that z−j b is holomorphic in z−1 and zku.

3. Compute the first coordinate of the section on the second chart: f =
zj a + p u. Now for each term zsur, whenever s > kr the coefficient must
vanish; this gives relations between the coefficients.

4. The module M is now built up step by step by substituting the relations
back into a and b, and setting one coefficient to 1 and all others to 0 (call
the result a1, b1 just for now), transforming (a1, b1) into expressions over

12



S and adding the resulting vector as a generator of M . After doing this
for all coefficients, a presentation for M as a module over S is obtained.
(See [GaS] for details of this construction, in particular how it deals with
“fake relations”.)

5. The computation of the cokernel of ev : M ↪→M∨∨ relies on [GaS, Lemma
2.1] and can be done very easily in Macaulay 2. The instanton width of
E is the dimension of coker(ev) as a C-vector space.

6.2 Computation of instanton heights

We will use the following formula for the height, which is proved in [BGK]:

Theorem 6.3 ([BGK, 2.6]). Let E be a non-split bundle represented in canon-
ical form by (j, p), and let m > 0 be the smallest exponent of u appearing in p.
With µ = min

(
m, b j−2

k c
)
, we have

l(R1π∗E) = µ

(
j − 1− k

µ− 1
2

)
. (6.4)

6.3 Results

Lemma 6.5. Let Ej be a rank-2 bundle over Zk with c1 = 0 and splitting type
j < k. Then

χloc(Ej) = j − 1 . (6.6)

Proof. By [Ga2, Theorem 3.3] it follows that if j < k then Ej
∼= OZk

(j) ⊕
OZk

(−j). By definition, χloc(Ej) = w(Ej) + h(Ej). Direct computation (see
[BGK]) then shows that w(Ej) = 0 and h(Ej) = j − 1.

Proposition 6.7. Let E be a rank-2 reflexive sheaf on Zk with splitting type
≥ k, then χ

(
x,E

)
≥ k − 1.

Proof. By semi-continuity of χ
(
x,E

)
on the splitting type, the lowest value of

χ
(
x,E

)
must occur for splitting type k. By definition,

χ
(
x, E

)
≥ h0

(
X;R1π∗E

)
,

and now apply the formula (6.4).

Theorem 6.8. The minimal local charge of a nontrivial SU(2)-instanton on
Zk is χmin

k = k − 1. The local moduli space of (unframed) instantons on Zk

having fixed local charge χmin
k has dimension k − 2.

Proof. By Corollary 5.5, a nontrivial instanton bundle over Zk has splitting
type kn for some n ∈ Z, n > 0. Hence, the smallest nontrivial splitting
type is exactly k, and the generic such instanton corresponds to an element
of Ext1Zk

(
O(k),O(−k)

)
which is nontrivial on the first formal neighbourhood.
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The dimension of the local moduli space with fixed χmin
k is obtained from

formula (5.1) setting j = k. We compute χ for the bundle E corresponding to
the extension class [zu] ∈ Ext1

(
O(k),O(−k)

)
.

By Equation (6.4), h(E) = k − 1.
To compute w(E) = h0

(
X, (π∗E)∨∨

/
π∗E

)
, we use the method described in

Section 6.1: Let Q be the skyscraper sheaf defined by the exact sequence

0 −→ π∗E −→
(
π∗E

)∨∨ −→ Q −→ 0 .

Then w(E) equals the dimension of Q∧
x as a kx-module. So, we need to study

the map π∗E
∧
x → (π∗E∧

x )∨∨ and compute the dimension of the cokernel, i.e. we
need to compute the module structure on M := π∗E

∧
x and study the natural

map M ↪→M∨∨. By the Theorem on Formal Functions (see [Ha1, p. 277]),

M ∼= lim←−
n

H0
(
`n;E|`n

)
,

where `n is the nth infinitesimal neighbourhood of `. Since the extension class
has degree 1 in u, then for n ≥ 1,

H0
(
`n;E|`n

) ∼= H0
(
`1;E|`1

)
.

Therefore, the inverse limit stabilises at 1, giving M ∼= H0
(
`1;E|`1

)
.

To compute the generators of M , we write the transition matrix for E ex-
plicitly. We set Zk = U ∪ V , where U ∼= C2 ∼= V , with change of coordinates
U 3 (z, u) 7→ (z−1, zku) ∈ V on U ∩V ∼= C−{0}×C. Then in these coordinate
charts, E is given by transition matrix

T =
(

zk zu
0 z−k

)
.

Set α =
(

u
0

)
and βi =

(
0
zi

)
for i = 0, . . . , k−1, βk =

(−zu

zk

)
. Then a presentation

for M is given by M =
〈
α, β0, . . . , βk

〉/
R, where R is the set of relations βix0−

βi−1x1 = 0 for i = 1, . . . , k − 1 and βkx0 − βik−1x1 − αx1 = 0. Standard
computations (which can be performed either by hand, or with a computer
algebra program) then show that the evaluation map ρ : M →M∨∨ is surjective.
Hence w(E) = 0.

Summing up, χmin
k = χloc

(
E

)
= w(E) + h(E) = 0 + (k − 1).

Remark 6.9 (Gaps in local instanton charges). The non-existence of instantons
with certain local charges on the spaces Zk when k > 2 is in stark contrast with
what happens in the case k = 1. In fact, by [BG1, Theorem 0.2], for every
non-negative integer n there exist instantons on Z1 with local charge n. More
precisely, by [BG1, Theorem 0.2], for every pair of integers (w, h) satisfying
j− 1− e ≤ w ≤ j(j− 1)/2− j e and 1 ≤ h ≤ j(j + 1)/2 with j ≥ 0 and e ≥ 0 or
−1, there exists a rank-2 vector bundle E on Z1 with splitting type (j,−j + e)
having w(E) = w and h(E) = h. Hence, there are no gaps in local charges for
instantons over Z1.
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[BGK] Ballico, E. Gasparim, E. and Köppe, T., Vector bundles near a neg-
ative curve: moduli and local Euler characteristic. Preprint.

[Bl] Blache, R., Chern classes and Hirzebruch–Riemann–Roch theorem
for coherent sheaves on complex-projective orbifolds with isolated sin-
gularities, Math. Z. 222 no. 1, 7–57 (1996).

[Bu] Buchdahl, N. P., Hermitian–Einstein connections and stable vector
bundles over compact algebraic surfaces, Math. Ann. 280, 625–648
(1988).

[BHMM] Boyer, C. P., Hurtubise, J. C., Mann, B. M. and Milgram, R. J., The
topology of instanton moduli spaces. I. The Atiyah–Jones conjecture.
Ann. of Math. (2) 137 no. 3, 561–609 (1993).

[D1] Donaldson, S. K., Instantons and geometric invariant theory, Comm.
Math. Phys. 93, 453–460 (1984).

[D2] Donaldson, S. K., Anti-self-dual connections over complex algebraic
surfaces and stable vector bundles, Proc. Lond. Math. Soc. (3) 50,
1–26 (1985).

[Ga1] Gasparim, E., The Atiyah–Jones conjecture for rational surfaces.
Preprint.

[Ga2] Gasparim, E., Holomorphic bundles on O(−k) are algebraic, Comm.
Algebra 25 no. 10, 3001–3009 (1997).

[GaS] Gasparim, E. and Swanson, I., Computing instanton numbers of
curve singularities, J. Symbolic Comput. 40 no. 2, 965–978 (2005)

[GO] Gasparim, E. and Ontaneda, P., Three applications of instanton num-
bers, Comm. Math. Phys. 270 no.1, 1–12 (2007).

[Ha1] Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics
52. Springer-Verlag, New York-Heidelberg (1977).

[Ha2] Hartshorne, R., Stable reflexive sheaves, Math. Ann. 254 no. 2, 121–
176 (1980).

[HM] Hurtubise, J. and Milgram, R. J., The Atiyah–Jones conjecture for
ruled surfaces, J. Reine Angew. Math. 466, 111–143 (1995).

[Kn] King, A., Instantons and holomorphic bundles on the blown-up plane,
D. Phil. Thesis, Worcester College, Oxford (1998).

15



[LB1] LeBrun, C., Counter-examples to the generalized positive action con-
jecture, Commun. Math. Phys. 118, 591–596 (1988).

[LB2] LeBrun, C., Explicit self-dual metrics on CP 2# · · ·# CP 2, J. Differ-
ential Geom. 34 no. 1, 223–253 (1991).

[LB3] LeBrun, C., Twistors, Kähler manifolds, and bimeromorphic geome-
try. I. J. Amer. Math. Soc. 5 no. 2, 289–316 (1992).
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