
Introduction to Geometric Langlands over C
Lectures by Constantin typed by Elizabeth - 2007

The “classical” geometric Langlands correspondence is a package of dual-
ities between structures associated to a compact Riemannian surface Σ and a
(complex, semi-simple) Lie group G. The Langlands dual group LG appears
on the other side of the duality. For G = GL(1) = C∗ or more generally for
GL(n,C) the Langlands dual group is G itself. But even then, and even
in the symmetric version of the correspondence, the predicted duality is far
from trivial (a self-duality on a set or a category which is not the identity.
The original motivation came from arithmetic representation theory (study
of complex representations of groups G(Qp) of G(number field) which has a
consistent behaviour across all primes p). The translation is

number fields ⇒ Riemannian surfaces
(Dedekind domain, 1 dim ring) (local ring, 1 dim)

G(Qp) ⇒ Loop groups (Kac–Moody groups)

but the naive representation theory connection breaks in this translation.
It is thus remarkable that a reformulation of the LHS (Laumon; Drinfeld)
makes sense, and seems to be true over C.

Note: There is also a version when the Riemannian surface (= projective
curve over C) gets replaced by a projective curve over a finite field. For
GL(n) this was proved by Lafforgue. Frenkel and Gaitsgory are working on
a “categorical translation” of geometric Langlands that would restore the
link with Kac – Moody groups.

The geometric motivation for Langlands duality over C came from a dif-
ferent and independent direction, initiated by N. Hitchin, who studied the
moduli spaces of holomorphic vector bundles over a Riemann surface and
the complex-analytic geometry of their cotangent bundles (T ∗MG). Soon it
was realised (Beilinson – Drinfeld) that Hitchin’s construction (The Hitchin
System) was the underlying semi-classical system of a possible formulation
of the geometric Langlands correspondence. That is, the geometric Lang-
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lands correspondence was the non-commutative deformation of a conjectural
equivalence of derived categories of coherent sheaves between T ∗MG and
T ∗MLG. Subsequently they used these ideas to prove a small (but nontrivial
and convincing) part of the geometric Langlands correspondence.

For G = GL(1) or a torus (= product of GL(1)’s) the entire project
has been beautifully solved using the Fourier-Mukai correspondence. The
statements and the geometry are crystal clear but not trivial. The project
was completed by a theorem of Polishchuck – Rothstein. We then have:

Classical Langlands

D(Coh(T ∗MGL(1))) ←→ D(Coh(T ∗MGL(1)))
Hecke eigensheaves ←→ points

Geometric Langlands

D(D −modules on MGL(1)) ←→ Coh(GL(1) local systems)
Hecke eigensheaves ←→ points

Double deformed Langlands

D(Dh −modules on MGL(1)) ←→ D(D1/h −modules on MGL(1))
no points in sight

1 Geometric Langlands I

Hitchin’s system gives a “generic Abelianization” of the underlying geometric
picture for arbitrary G, of the form that was later recognised as an instance of
t-duality in mirror symmetry. This provides another motivation for studying
geometric Langlands; as a non-trivial but (perhaps) exactly solvable example
of t-duality.

The work of Witten, Kapustin and Gukov gives a complete dictionary
of ingredients between geometric Langlands and Mirror Symmetry (relating
them to duality of QFT’s in 4 dimensions).

We’ll study the geometric ingredients in geometric Langlands (classical)
and their noncommutative deformations. These are:

• holomorphic line bundles and Jacobians

• coherent sheaves and their derived categories
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• Fourier–Mukai transform for Abelian varieties

• noncommutative deformations,D-modules and twisted D-modules.

• vector bundles on Riemann surfaces and Hitchin systems

• Hecke correspondence

• geometric classical Langlands via Fourier–Mukai

• Beillinson-Drinfeld construction of certain eigensheaves.

1.1 The Fourier Transform

The Fourier transform of a function f : R→ C is by definition

f̃(k) :=

∫ ∞

−∞
f(x)eikxdx

and we have Fourier’s inversion formula

f(x) =
1

2π

∫ ∞

−∞
f̃(k)e−ikxdk.

Here we observe that the Fourier transform is almost its own inverse.
This as well as several other properties of classical Fourier transform will
have analogues in the Fourier–Mukai transform. We recall some of these
properties.

• interchanges local and global behaviour:

rapid decay of f ↔ smoothness of f̃

f polynomial ↔ f̃ distribution supported at 0

f ≡ 1 ↔ f̃ = 2πδ0(k)

• takes Gaussians to Gaussians:

e−x2/2a 7→
√

2πae−ak2/2
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• takes multiplication to convolution:

α− eigenvalue for multiplication = δ function at α
⇓ (FourierTransform)

iα− eigenvalue for convolution = Fourier mode eiαk

E.g.: (δ′0 ? ϕ)(k) =

∫
δ′0(l)ϕ(k − l)dl =

∫
δ0(l)ϕ

′(k − l)dl = ϕ′(k)

eiαk 7→ iαeiαk

1.2 Invariant formulation of the Fourier transform

Let V be a vector space and V ∗ its dual, chose volume forms on both. We
can define a Fourier transform between functions on V and V ∗.

FT : Λ•V ∗ → Λ•V

ϕ 7→ ϕ̃(w) :=

∫
V

ϕ(v)e
P

k wk∧vk

Physicist’s trick: define an odd vector space V by making liner functions
on V anti-commute. We now see the concept of odd Fourier transform.

Let L ⊂ V be a lattice and L∗ ⊂ V ∗ be the dual lattice. Then the
simplest case of Langlands duality considers T = V/L and the dual torus
T∨ = V ∗/L∗.

Note: π1T ' L ' Hom(T∨, S1) = Irrep(T∨) and
π1T

∨ ' L∗ ' Hom(T, S1) = Irrep(T ).

Proposition 1.1 H∗(T,R) ' Λ•V ∗ and H∗(T∨,R) ' Λ•V. The Fourier
transform is Poincaré duality on T (on T∨) with respect to the chosen volume
form.

Recall that Poincaré duality gives a pairing

Hk(M)⊗HdimM−k(M)→ R

ϕ⊗ ψ 7→
∫

M

ϕ ∧ ψ.
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If M is compact, oriented, this pairing is non-degenerate and gives an iso-
morphism. In case of a torus we get the previous pairing. There is a more
geometric construction of the duality pairing, given by the (cohomological)
Fourier–Mukai transform.

Consider the kernel exp(
∑

k wk ∧ vk) ∈ H∗(T × T∨). and define the map
H∗(T )→ H∗(T ) by

ϕ 7→
∫

T

ϕ ∧ exp(
∑

k

wk ∧ vk) ∈ H∗(T∨).

Given the diagram
T × T∨

π1 ↙ ↘ π2

T T∨

then the Fourier–Mukai correspondence can be written as

ϕ 7→ (π2)∗(π
∗
1ϕ ∧K),

where Kis the kernel. This version makes sense in much more general set-
tings, even when we do not have non-degeneracy of the Poincaré duality
pairing. It suffices to have the concepts of inverse images, direct images and
products.

1.3 Bundles, connections

To make a geometric description of the Fourier–Mukai kernel we must discuss
line bundles (unitary and holomorphic), Abelian varieties, coherent sheaves,
and K-theory.

Definition 1.2 A complex vector bundle over X is a triple V
p→ X where

V and X are topological (resp. smooth manifolds, complex analytic) spaces,
p is a continuous (resp. smooth, holomorphic) map, such that every point
x ∈ X has a neighborhood U with p−1(U) ' U × Cn.

The vector space p−1(x) is called the fibre over x. If n = 1 then V is called
a line bundle.

Example 1.3 The tangent bundle of a smooth (holomorphic) manifold is a
topological (holomorphic) vector bundle.
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Definition 1.4 A section of V
p→ X over U ⊂ X is a map σ:U → V

satisfying p ◦ σ = id. Sections over U form a module over functions on U.
A connection on a vector bundle is a rule for differentiating sections by

first order differential operators on the base, which satisfy Leibniz rule:

Dt(f · σ) = ∂tf · σ + f ·Dt(σ)

for any vector t tangent to X at x. Dt should be linear in t.

Example 1.5 V= the product bundle X × Cn, α = matrix valued 1-form
on X. Set

Dt(σ) = ∂tσ + α(t) · σ.

Definition 1.6 A connection is flat it is defines an action of the algebra of
differential operators on X over the sections of V.

Remark 1.7 On every open set U the algebra of differential operators is
called D(U) and a flat vector bundle is the simplest example of a D-module.

Example 1.8 With D = ∂ + α as before choose coordinates xi so that α =∑
i αidxi. Then the obstruction to flatness is the curvature of D, ∂αi/∂xj −

∂αj/∂xi + [αj, αi], for each pair of indices i, j.

Theorem 1.9 (Monodromy) Choose a point x ∈ X and let Vx be the fibre
of V at x. Up to isomorphism, a flat vector bundle is determined by its
monodromy representation m: π1(X)→ GL(Vx) (up to GL conjugation).

Definition 1.10 The flat bundle is called unitary if for every x the image of
π1(X) lies on the unitary subgroup of GL(Vx) for a specified inner product,
in that case, we can specify a metric on the fibers for which parallel transport
is unitary.

Theorem 1.11 Complex line bundles are determined up to topological iso-
morphism by their first Chern class in H2(X,Z). If X has no homology tor-
sion, flat line bundles are topologically trivial.
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1.4 The Poincaré bundle

Since the torus T = V/L has no homology torsion,, flat line bundle on it
are topologically trivial, so flat connections have the form Di = ∂/∂vi + αi

(derivative in the i-th direction) where α =
∑
αiw

i is a 1-form on T. The
monodromy representation of the connection, π1(T ) → GL1(C) = C∗ sends
a cycle C ⊂ T to exp

∫
c
α. This depends only on the image by exp of the

cohomology class of α in H1(T,C∗). So, up to isomorphism, flat connections
are parametrised by T∨.

Corollary 1.12 T∨ is the moduli space of flat unitary bundles on T.

Consequently, we can construct a universal line bundle on T ×T∨, trivial
along {0} × T∨ and restricting on T × {t∗} to the flat line bundle with
holonomy t∗. This universal line bundle P is called the Poincaré line bundle.
It carries a flat connection along T.

Construction of P : Start with the trivial bundle over T × V ∗, with the
standard flat connection along V ∗, and with connection ∂− 2πiw along T at
T ×{w} (having monodromy exp(2πi

∫
C
w along C). The curvature (∂kαl −

∂lαk) of this connection is 2πi
∑

k vk ∧ wk, so the Chern class
∑

k vkwk is in
the kernel of the cohomological Fourier–Mukai transform.

Observe that L∗ acts on V ∗ by translations. We can lift this to an action
on the total space of the line bundle by

`∗ · (t, w, λ) = (t, w + T∨, λ · e2πi`∗(t)).

Dividing out by L∗ gives a line bundle with connection on T × T∨. The
connection is flat along T and along T∨, and the Chern class is

∑
vk ∧ wk.

Remark 1.13 The monodromy representation along T∨ at {t}× T∨ is ` 7→
e2πi`∗(t). So, P is the conjugate of the T∨-Poincaré line bundle on T∨ × T,
where we are viewing T and the moduli of flat line bundles on T∨.

Remark 1.14 Integration in cohomology has a counterpart in K-theory,
when P 7→ exp(

∑
k vk ∧wk). We can define the Fourier–Mukai transform by

K∗(T )→ K∗(T∨)

E 7→ (p2)!p
∗
1(E ⊗ P).
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2 Geometric Langlands II

2.1 Complex structures on tori

If V is a complex vector space, then T = V/L is a complex compact manifold,
which is also an Abelian group. If in addition T is algebraic, then it is called
an Abelian variety. The dual Abelian variety is T∨ = V ∨/L∨ with the
complex conjugate structure. This makes the Poincaré bundle holomorphic.
P is then the universal line bundle over T × T∨.

2.2 Dolbeault cohomology

The Dolbeault cohomology allows us to define the direct image (=push for-
ward) of vector bundles in the holomorphic category. It leads not to vector
bundles, but to coherent sheaves, or more precisely, to objects in the derived
category of those. From a holomorphic vector bundle E → X one obtains
the sheaf of holomorphic sections O(E), which to an open set U ⊂ X assigns
the module O(E)(U) of holomorphic sections of E over U.

Fact: The Dolbeaut operator is half of the de Rham operator, and can be
defined on C∞ sections of E from the holomorphic structure alone. Locally a
C∞ section is

∑
fiss where the si form a local frame of holomorphic sections

and the fi are C∞ functions. On functions, we have:

∂̄:C∞ → Ω0,1

f 7→
∑ ∂f

∂z̄k
· dz̄k,

where, corresponding to zk = xk + iyk we have

∂

∂z̄k
=

1

2

(
∂

∂xk
+ i

∂

∂xk

)
dz̄k = dxk − idyk.

The ∂̄ operator gives rise to a complex

Ω0,0 ∂̄→ Ω0,1 ∂̄→ · · · ∂̄→ Ω0,dim X

which locally resolves the subsheaf O ⊂ C∞ of holomorphic functions. We
can define ∂̄ on C∞(E) by ∂̄(

∑
fisi) =

∑
∂̄fi · si. This turns out to be well
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defined, and independent of the decomposition of s =
∑
fisi in a holomorphic

frame.

Definition 2.1 Hq(X,E) :=
ker ∂̄: Ω0,q(E)→ Ω0,q+1(E)

im∂̄: Ω0,q−1(E)→ Ω0,q(E)
is the q-th Dol-

beault cohomology group of E.

Theorem 2.2 If X is compact, then Hq(X,E) is finite dimensional.

Let now X
p→ Y be a fiber bundle. Then we can define a vertical Dol-

beault complex of O(X)-modules over Y. Grauert’s direct image theorem
asserts that, if p is proper, then the cohomology sheaves of the associated
complex are locally finitely generated O-modules (= coherent sheaves).

2.3 Coherent sheaves and derived categories

Motivation: We want a category that contains holomorphic vector bundles,
as well as their inverse and direct images (pull-backs and push-forwards). The
push-forward is implemented by coherent sheaf cohomology along the fibers
of a morphism, e.g. Dolbeault cohomology, which results in sheaves, not
bundles.

Definition 2.3 A coherent sheaf over a complex manifold is a sheaf of Abelian
groups which is locally the cokernel of a morphism O⊕m ϕ→ O⊕n.

Note that ϕ is an O-module map, locally given by and n × m matrix of
holomorphic functions.

Remark 2.4 Coherent sheaves are O-modules, precisely the locally finitely
presented O-modules.

Example 2.5 over C the cokernel of the multiplication by z gives the short
exact sequence

O z→ O → C0

with cokernel a skyscraper sheaf C0 supported at zero.
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Note: Something funny happens here. The kernel of the morphism above
is 0, but the fiberwise kernel is C ! Homological algebra comes to the rescue:
TorO1 (C0,C0) = C0 recovers the missing C0 if we need it.

Note: Starting with vector bundles, even f∗ can lead to a sheaf and not

a bundle. E.g. take p: C̃2 → C2 the blow up at a point, with exceptional
divisor = E then the direct image p∗O(−E) is m0 where m is the maximal
ideal at zero in C2.

Theorem 2.6 (Grauert’s direct image theorem) f :X → Y a proper map
between complex spaces, and F → X coherent, then all the higher direct
images Rif∗F are coherent, and vanish for i > dimX.

Fact: Just coherent sheaves are not enough! We want also to keep track of
the homological algebra information that is missing, such as in the previous
example. Otherwise, we could only write the E2 terms for spectral sequences,
but would be missing the information required to compute differentials. The
derived category contains precisely this missing information that goes into
the connecting data.

We start with the honest theory of complexes of coherent sheaves, and
then discard the information that will never appear in cohomology.

Definition 2.7 Let A be an Abelian category (e.g. coherent sheaves on a
variety), and set

• Kb(A) = category of bounded complexes of objects in A

• K+(A) = category of complexes of objects in A that are bounded below

• K−(A) = category of complexes of objects in A that are bounded above

in each of these categories, the morphisms are maps of complexes. A map
of complexes that induces isomorphism in cohomology is called a quasi-
isomorphism. Then we set:

• Db(A) = the category with the same objects as Kb(A) but where we
formally invert quasi-isomorphisms

• D+(A) = obtained from K+(A) formally inverting quasi-isomorphisms
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• D−(A) = obtained from K−(A) formally inverting quasi-isomorphisms.

Thus, in the D• categories, morphisms are formally finite chains:

C C ′′ Civ

↘q.i.↙ ↘q.i.↙
C ′ C ′′′

modulo an equivalence relation. But a bit of technical work cleans up the pre-
sentation (factor through the cohomology category, which admits a “calculus
of fractions”) and reduces the chain to a single zig-zag.

Example 2.8 If A is semi-simple, i.e. every short exact sequence splits (e.g.
Vect) then D(A) = category of graded objects in A, and homs are maps that
preserve the grading.

Example 2.9 IfA has homological dimension 1 (e.g. modules over a Dedekind
domain), then every object in D(A) is isomorphic to the direct sum of its co-
homologies. But D(A) is not equivalent to the category of graded A-objects.

In D(Z −modules) there is a morphism from Z/2 viewed as a complex
concentrated in degree 0 to Z in degree -1:

−1 0

[Z 2→ Z]
↓Id ↓0

[Z] 0

but there is no such morphism in graded Z-modules.

Example 2.10 Coh(Σ) where Σ is a Riemann surface. in D(Coh(Σ) ev-
ery object is isomorphic to a sum of graded a vector bundle and a graded
skyscraper sheaf.

Example 2.11 In dimension ≥ 2 there are extra objects. For instance, the
complex

C[x, y]⊕2
(x

y)−→ C[x, y]

has kernel C[x, y] mapping by [y,−x] and cokernel C at 0, but is a non-trivial
extension of the two. In fact, it is a Yoneda representative for the nontrivial
element in Ext2(C,C[x, y]) = C.
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Features of derived categories:

• do not have good concepts of kernels and cokernels (the standard def-
inition will produce very few such objects). Instead, there are distin-
guished triangles, originating from short exact sequence of complexes:
X → Y → Z → X[1]

• have a shift functor [1]

• satisfy the axioms of a triangulated category

• ordinarily, half exact functors on Abelian categories tend to have de-
rived analogues which are exact. Left exact functors (e.g. global sec-
tions of a coherent sheaf) have a right derived version (see below).
Right exact functors (e.g. tensor) have left derived functors. (Some
technical conditions apply.)

Features specific to coherent sheaves:

• On a smooth quasi-projective variety, every object in DCoh is repre-
sentable by a complex of vector bundles.

• The derived functor RΓ (global sections) of a complex of vector bundles
is computed by the total Dolbeault complex.

• On a smooth algebraic variety, DCoh is equivalent to the full sub-
category of D(O − modules) consisting of objects whose cohomology
sheaves are coherent.

Theorem 2.12 For X, Y projective varieties, F ∈ D−Coh(X × Y ), the
assignment

S 7→ RπY ∗(F ⊗L π∗XS)

defines and exact functor D−Coh(X)→ D−Coh(Y ).

Denote this functor by φF . The image φF(S) = F ?S is called the convolution
of F and S.

Theorem 2.13 (Orlov) If X and Y are smooth, then every exact equivalence
D−Coh(X)→ D−Coh(Y ) is given by φF for some F ∈ D−Coh(X × Y ).
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Theorem 2.14 If F ∈ DbCoh(X × Y ) and G ∈ Db(Coh(Y × Z), then
G ?F ∈ DbCoh(X ×Z) and φG ◦ φF is given by convolution with G ?F , that
is, φG ◦ φF = φG?F .

Idea of Proof: Use base change

X × Y × Z
QY ↙ ↘PY

X × Y Y × Z
↙ ↘pY qY↙ ↘

X Y Z

q∗Y ◦R(pY )∗ = R(PY )∗ ◦Q∗Y for SuppE proper over Y.

Theorem 2.15 (Mukai) Let A and A∨ be dual Abelian varieties of dimen-
sion n. Let P and P∨ be the Poincaré bundles on A × A∨ and A∨ × A.
Then

φP ◦ φP∨ = (−1A)∗[−n]

φP∨ ◦ φP = (−1A∨)
∗[−n].

3 Geometric Langlands III

3.1 More on derived categories

Example 3.1 Let V ect be the category of finite dimensional vector spaces
over C. In this category, every complex of vector spaces is quasi-isomorphic to
its cohomology, and also any morphism on the derived category is determined
by the induced map in cohomology. Indeed, one can check that here two
maps of complexes inducing the same map in cohomology are homotopic, and
homotopic morphisms become equal in the derived category. Consequently,
denoting by Gr(V ect) the category of graded vector spaces, we have:

D(V ect) ' Gr(V ect)
complex with zero differential ↔ cohomology

Example 3.2 Let Mod−Z denote the category of finitely generate Abelian
groups. It is a fact that in this category every complex is quasi-isomorphic
to its cohomology. However,

D(Mod− Z) 6' Gr(Mod− Z)
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because the morphisms are different. In fact, inGr(Mod−Z), Hom(Z/p[−1],Z) =
0 for degree reasons. But in D(Mod− Z) instead Hom(Z/p[−1],Z) = Z/p,
in fact, in D(Mod − Z) it holds that Hom(Z/p,Z) = Ext1(Z/p,Z) and, by
the example in the previous lecture, there is morphism

0 1

[Z p→ Z] → 0
↓ ↓0

[Z] 0 → 0

which is nonzero in D(Mod−Z) because its dual is the surjection Z→ Z/p.

Example 3.3 If dimR > 1 then it is not true that Ob(D(Mod − R)) are
isomorphic to their cohomology. See example 2.11.

A complex with a single non-zero cohomology group is quasi-isomorphic
to its cohomology.

→ Cp−1 → Cp ∂p→ Cp+1 → · · ·
↑ ↑ ↑

→ Cp−1 → Ker ∂p → 0 →
↓ ↓ ↓ ↓
0 → 0 → Hp → 0

Here the vertical arrows induce isomorphism in cohomology, hence are
quasi-isomorphisms.

An object with cohomology Hp and Hq in 2 degrees only, p < q, is deter-
mined up to isomorphism by an element of Extq−p+1(Hq, Hp). It is canoni-
cally isomorphic to a complex concentrated in the interval [p, q]. This gives
a Yoneda representation for the extension class.

Remark 3.4 InMod−R you can compute Extn(A,B) from a free resolution
of A. Taking

· · · → F2 → F1 → F0 → A.

and applying Hom(., B) gives

· · · ← Hom(F1, B)→ Hom(F0, B)

then Extn(A,B) is the n−th cohomology of this complex.
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In general, an object in D is determined up to isomorphism its coho-
mology groups and a sequence of extension classes. The information about
extension classes is concealed in the formalist of derived categories.

Analogy for Topologists:

derived categories ↔ homotopy category of topological space
quasi-isomorphism ↔ weak homotopy equivalence
cohomology groups ↔ homotopy groups

extension data ↔ k- invariants in the Postnikov tower of a space

3.2 Abelian categories and triangulated categories

In an Abelian category there exist the concepts of monomorphism, epimor-
phism, short exact sequence, kernel, cokernel, etc.

In a derived category the respective notions give nothing sensible: a quasi-
isomorphism of complexes need not be represented by an injective or surjec-
tive map. Instead, in the derived category there is the notion of exact trian-
gles A → B → C → A[1]. Properties of exact triangles are axiomatized in
the notion of triangulated categories. We’ll just recall that an exact functor
between derived categories is a C−linear functor which commutes with the
shift and takes exact triangles to exact triangles.

Example 3.5 The main case to consider is that half exact functors be-
tween Abelian categories often induce exact derived functors between de-
rived categories. A particular such example is the functor of global sections
Γ:Coh(X) → V ect defined by S 7→ Γ(X,S). Γ is left exact and has a right
derived functor RΓ:DCoh(X)→ DV ect.

More generally, if f :X → Y is proper, it induces f∗:Coh(X)→ Coh(Y )
and Rf∗:DCoh(X)→ DCoh(Y ), represented by the relative Dolbeault com-
plex if f is a fiber bundle.

Remark 3.6 When X is quasi-projective, DCoh(X) is equivalent to the
full subcategory of sheaves of O−modules on X with coherent cohomology
sheaves. This is important because the Dolbeault complex is not a complex
of coherent sheaves. If the conclusion of the previous statement fails, then
the correct “derived category” is the second one.
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Recall from theorem 2.12 that For any E ∈ DCoh(X×Y ) whose support
is proper over Y,

F 7→ (RpY )∗ ◦ (φE ⊗L p∗XF) = E ? F

gives an exact functor DCoh(X)→ DCoh(Y ).

Remark 3.7 When the varieties are not smooth, p∗ must be Lp∗ and then
may have to be in D−Coh (complexes bounded below).

Remark 3.8 When X is projective E is determined by φE , because the col-
lection of φE(L

⊗n) for large values of n determine E .

Corollary 3.9 φE and φF give inverse equivalences iff φE?F = ∆∗OY ∈
Coh(Y × Y ) and φF?E = ∆∗OX ∈ Coh(X ×X).

A result of Orlov can reduce the check to a “pointwise” computation.

Theorem 3.10 (Orlov) X, Y smooth projective over C. Then φE is fully
faithful iff the images φE(Cx) of skyscraper sheaves at x ∈ X satisfy

Hom(φE(Cx1), φE(Cx2)) = 0, for x1 6= x2

and Ext(φE(Cx), φE(Cx)) lives in degree [1, · · · , dimX].

For Abelian varieties, φCx are flat line bundles on A∗. In this case we
get that φP and φP∨ are fully faithful and they are adjoint functions, which
implies the equivalence.

3.3 The Jacobian variety of a Riemann surface

Let J0 denote the moduli space of isomorphism classes of flat unitary line
bundles on Σ. There is a map

R2g/Z2g ≡ H1(Σ,R)/H1(Σ,Z)
exp→ J0 = H1(Σ, U(1)).

We have a complex structure on J0 coming from its interpretation as moduli
of holomorphic structures on the trivial line bundle. The (0, 1)-part of any
flat connection gives a ∂̄-operator, hence, a holomorphic structure on the
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line bundles. (A section σ is holomorphic if ∂̄σ = 0.) We have H1(Σ,C) =
{harmonic 1 − forms} = H1,0(Σ) ⊕H0,1(Σ) by Hodge decomposition, and
H1(Σ,C) = H0(Σ,Ω1)⊕H1(Σ,O). Notice that
1) Complex conjugation interchanges these spaces.
2) Poincaré duality gives a non-degenerate skew pairing

Λ2H1(Σ,Z)→ H2(Σ,Z) ≡ Z

leading to an isomorphism

H1(Σ,O) ' H0(Σ,Ω1)∨ ' H1(Σ,O)∨.

The holomorphic structure on J0 is defined to be H1(Σ,O)/H1(Σ,Z) and
is isomorphic to that on the dual Abelian variety J∗0 = H1(Σ,Z)/H1(Σ,Z)
(self-duality of the degree 0 Jacobian).

Remark 3.11 More generally for a torus T (' U(1)n but not canonically)
and with complexification TC there is a natural duality between the “Jaco-
bian” of holomorphic TC-bundles and that of holomorphic T∨C - bundles, where
T∨C denotes the Langlands dual torus TC = V/L and T∨C = V ∨/L∨. This does
not require a choice of basis in T.

Other holomorphic line bundles, are separated by degree inH2(Σ,Z) = Z)
giving

Pic(Σ) = qdPic
d(Σ) ' qdJ0

and after a choice of a degree one line bundle L on Σ there is an isomorphism
L⊗d ⊗ J0 ' Picd.
Problem: Including these seems to break Langlands duality, because for
TC-bundles the components are labelled by π1TC whereas for the dual T∨C is
labelled by π1T

∨
C = Hom(TC, GL(1)) and there is no identification of these

two. This problem is solved by including automorphisms (passing from mod-
uli spaces to moduli stacks).

Every holomorphic line bundles on Σ has a GL(1) worth of automor-
phisms (scaling of a section). The correct “moduli object” is then J ×BGL1

or in general J(T )×BTC. But the factorization is not quite canonical.
Moral: coherent sheaves on J0 are supposed to carry a fibrewise action

of GL(1) or of TC in general. We can decompose the category of coherent
sheaves according to TC irreducibles. Hom between sheaves must preserve
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the TC action, so this gives an orthogonal decomposition. Consequently, the
relevant categories of coherent sheaves for the classical Langlands are

for TC : Π`∈π1T

⊕
λ∈(π1T )∨

DCoh(J(T ))λ
`

for T∨C : Πλ∈(π1T )∨

⊕
`∈π1T

DCoh(J(T∨))`
λ

These are orthogonal decompositions of the categories, meaning that
Hom between objects in different components are always zero. Fourier–
Mukai exchanges the weight under the automorphism group with the com-
ponent. E.g. coherent sheaves with compact support in both sides correspond
exactly.

Note: some growth condition must be specified so that the two categories
become equivalent. It is important that we do get an exact match because in
the non-Abelian case the components get mangled up together into a single
component, so no “correction by hand” can be done.

3.4 Convolution versus multiplication

The Fourier transforms exchanges “coherent states”, that is, interchanges
eigenvalues for differentiation (eiαx) with eigenvector for multiplication (δ
functions). Fourier–Mukai interchanges flat line bundles with skyscraper
sheaves. Note that skyscraper sheaves are eigensheaves for the operator of
tensoring by a coherent sheaf, since

S ⊗L Oα ' (derived fibre of S at α)⊗Oα.

Proposition 3.12 Any F ∈ DCoh(A) with

S ⊗L F ' (derived fibre of S at α)⊗F

is equivalent to a sum of shifted copies of Oα.

Idea of proof: First show that F is supported at α because tensoring with
i∗OA−α kills it. Then tensoring with a skyscraper sheaf at α leads to a direct
sum of skyscraper sheaves.
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Theorem 3.13 For any S ∈ DCoh(A) and line bundle L(α)

S ? L(α) ' Ext(L(α),S)⊗ L(α).

Moreover, any sheaf with this property is a a sum of shifted copies of the L(α).

Idea of proof: Observe that L(α) is isomorphic to all of its translates, by an
isomorphism defined by the holonomy representation. So, given the multi-
plication m:A× A→ A, the fibre at a ∈ A is the set of all points (x, a− x)
and there is an isomorphism S×L(α) ' L(α−1) ⊗ S.

Theorem 3.14 Fourier–Mukai transform takes multiplication to convolu-
tion shifted by n = dimA.

Proof: We need to show that for ∆:A→ A× A, and

m:A× A∨ × A× A∨ → A× A× A∨
(a, α, b, β) 7→ (a, b, αβ)

we have
Rm∗: (P×P∨) = ∆∗P [n].

Then for E ,F ∈ DCoh(A) we have

(E ⊗ P)×(F ⊗ P∨) 7→ E ⊗ F ⊗ P[−n].

The fibre of P×P∨ over (a, b) is L(a)×L(b). But convolution with 0 if a 6= b
and is L(a)[−n] if a = b.

3.5 Hecke correspondence

In the case of a Jacobian, we can impose the eingensheaf condition using
geometric information. Morally: an eigensheaf for the convolution is and
eigensheaf for translations (=convolution by a skyscraper sheaves).

Let p ∈ Σ, and for any holomorphic line bundle L let O(L(p)) be the
sheaf of meromorphic sections of L having a single simple pole at p and
holomorphic elsewhere.

Lemma 3.15 O(L(p)) is the sheaf of sections of a holomorphic line bundle
with deg = deg(L) + 1, denoted L(p). The induced map on Jacobians Jp →
Jp+1 is an isomorphism called the Hecke correspondence.
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Proof: Note that z−1C[z] is a free C[z]-module of rank 1, thus corresponding
to a line bundle.

Remark 3.16 For p, q ∈ Σ, L(p− q) is a point in the Jacobian of Σ. For a
fixed q, the assignment p 7→ L(p− q) defines a holomorphic map ϕ: Σ → J0

called the Abel–Jacobi map.

Theorem 3.17 Let ϕ be the Abel–Jacobi map:
ι. ϕ is an embedding.
ιι. ϕ:H1(Σ)→ H1(J0) is an isomorphism.
ιιι. imϕ generates J0.
ιν. P on J0 × J0 restricts to the universal bundle on Σ.

Remark 3.18 More canonically, given Σ → J0, there is SgΣ → Jg with
image on Θ divisor. A choice of

√
K of degree g − 1 moves the Θ divisor

back to J0 (theory of Θ functions).

Corollary 3.19 Imposing the eigensheaf condition with respect to transla-
tions in J0 is equivalent to imposing an eigensheaf condition with respect
to p − q for p, q ∈ Σ. Imposing the condition for a single point relates the
different components of J.

The global Hecke eigensheaf condition is then defined by:

id×H: Σ× Jd → Σ× Jd+1

(p, L) 7→ (p, L(p))
.

More generally given a torus T we have Hecke maps labelled by components
of J(T )

id×Hγ: (p, T ) 7→ (p, T (p, γ),

where γ ∈ π1T and T is a principal T−bundle.

Remark 3.20 For each weight λ:T → GL(1) of T we get an associated
line bundle Jλ and the Hecke maps Hγ interchanges this line bundle with
Jλ(p · λ(γ)).
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Definition 3.21 A Hecke eigensheaf F ∈ DCoh(J(T )×BT ) with eigenvalue
T ∈ J(T∨) is an object with the property

(id×H)∗: (θ ×F) = L−1
γ

×F ,

where L−1
γ is the line bundle associated to T and to γ:T∨ → GL(1).

Theorem 3.22 The Hecke eigensheaves on J(T )× BT are the restrictions
of the Poincaré bundle to points in J(T∨).

The labelling of components in π1T
∨ = (π1T )∗ becomes the weight of the T

action.

4 Geometric Langlands IV

Recall that F ∈ DCoh(X) is an eigensheaf for the operation S⊗ if

S ⊗L F ' E(S)×F

for some exact functor E:DCoh(X)→ DV ect.

Note: This is a sensible requirement provided E satisfies E(S ×L S ′) =
ES ⊗E(S ′). (E.g. satisfied when E(S = S ⊗L Cx derived fiber at x ∈ X) In
such cases, the eigensheaves are sum of shifted copies of Cx. This all works
out well when X is smooth and projective.

On Abelian varieties, dualizing using Fourier–Mukai leads to the notion of
Eigensheaves for convolution. Given m:A×A→ A, we put the requirement
that m∗(S⊗F) = Ext(Lα,S)⊗F , for all S ∈ DCoh(A). The “fibre functor”
Ext(Lα,S) is Fourier–Mukai dual taking fibre at α. Eigensheaves are sums
of shifted copies of the Lα’s themselves

Lα ? Lα = Lα ⊗ Λ•(V̄ ∨).

In the non-Abelian case, the analogue of A will not be an Abelian group,
or even a group. So, we must impose the eigensheaf condition differently.
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4.1 Global eigensheaf condition

Given that translations Ta:A→ A generate A and that T ∗a = Ca? we might
try to just impose the eigensheaf condition only on translations, which turns
out to be correct, if done in the universal family. Consider id×m:A×A→
A× A. The global eigensheaf condition on F ∈ DCoh(A) is

(id×m)∗(O ×F) = L−1
α

×F .

Theorem 4.1 F is a global Lα eigensheaf if and only if for any S it is an
Lα eigensheaf for S ? .

Proof: S?F = m∗(S ×F) = p∗(id×m)∗(S ×F) = p∗ [(id×m)∗(S ×O)⊗ (O ×F)] =
p∗ [(S ×O)⊗ (L−1

α
×F)] = p∗((S ⊗ L−1

α ) ×F) = Ext(Lα,S)⊗F .

It is interesting to investigate the information dual to BT∨. We have
Dcoh(BT∨) = DRep(T∨) = graded functions on T∨.

4.2 Deformations of the Fourier–Mukai transform

The honest Fourier–Mukai for GL(1) involves the moduli of flat holomorphic
line bundles on Σ. It turns out that Fourier–Mukai can be extended to this
setting as well, and leads to non-commutative deformations on the eigensheaf
side. Briefly, in the eigensheaf condition we require L to be a flat line bundle.

Just as coherent sheaves are “controlled” by O, flat bundles are controlled
by the (sheaf of) algebras of differential operators D. Locally, in coordinates,
if O = C[x1, · · · , xn], then D = C[x1, · · · , xn, ∂1, · · · , ∂n] with [∂i, xj] = δij.
D is filtered by the order of the differential operators: O = D0 ⊂ D1 ⊂

D2 ⊂ · · · with Dk/Dk−1 ' SymkT ; and grD ' ⊕kDk/Dk−1 ' SymT as
algebras.
D is a non-commutative deformation of SymT, or said in another way,

D is a non-commutative deformation of O on T ∗X, and D−modules are
non-commutative deformations of coherent sheaves on T ∗(X).

For the non-commutative version of the Fourier–Mukai transform we con-
sider once again: A = V/L, A∨ = V̄ ∨/L∨ and its deformations. On the
A−side we consider the non-commutative deformation D of A× V ∨ and on
the A∨−side the complex algebraic deformations of A∨ × V ∨.

On the A∨−side we will define a affine fibre bundle Ã∨ → A∨ with fibre
V ∨. Up to isomorphism such bundles are given by classes in H1(A∨, V ∨) '
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V ∨ ⊗ H1(A∨) = V ∨ ⊗ (V̄ ∨)∨ = V ∨ ⊗ V ; and there is a distinguished class
Id ∈ V ∨⊗V. This gives the universal extension of A∨ as an Abelian algebraic
group.

Remark 4.2 If you filter the functions on Ã∨ by fibrewise degree, then the
corresponding gr is Sym(V ). So Ã∨ is a deformation of Sym(V ) over A.

When A and A∨ are isomorphic (e.g. Jacobian, principally polarized case)
we get an isomorphism V ' V̄ ∨ ' T ·A∨ from the Chern class of he principal
polarization and so we are dealing once again with a deformation of Sym(T ).

Theorem 4.3 Ã∨ is the moduli space of isomorphism classes of flat holo-
morphic line bundles on A.

Remark 4.4 All degree zero line bundles on A admit a unique flat unitary
connection. But now, we are not requiring unitarity, so we allow the addition
of an arbitrary holomorphic 1−form on A. There is a forgetful morphism from
V ∨ to A∨ :

V ∨ ={ global holomorphic differentials on A}
⇓

Mod(flat line bundles on A)
⇓
A∨.

This must be classified by a universal element on H1(A∨, V ∨) = V ⊗ V ∨

and the only ones are 0 and scalar multiples of the identity. Now, all scalar
multiples of the identity give rise to the same extension, but 0 gives rise to
the trivial extension. So, all we are saying is that the extension is non-trivial.

As a complex analytic manifold Mod(flat line bundles on A) is isomorphic
to a product of copies of GL(1) labelled by a basis of π1(A). Indeed, flat line
bundles on A are classified by elements ofHom(π1A,GL(1)). This shows that

Ã∨ 6= A∨ × V ∨, because the latter contains a compact submanifold A∨ × 0
of dimension > 0. However, algebraically this is not true. For example,
H∗(Ã∨) ' H∗(A∨) remembers the Hodge structure of A and its isomorphism
class.

As a consequence, there exists a universal (Poincaré) line bundle onA×Ã∨
with a flat connection along A varying holomorphically in Ã∨. Ignoring the
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connection, its the pull-back of the Poincaré line bundle on A × A∨. So, we
can define a non-commutative version of Fourier–Mukai transform:

DCoh(A∨)→ D(D −Mod(A))

by pull-back, ⊗P, and push-down by Dolbeault cohomology, and remember
the flat connection to get a D−module, not just an O−module.

Note that the result is usually not coherent as an O−module, but it is an
a D−module. For example, O transforms to the D−module generated by the
skyscraper sheaf at 1 on A. As an O−module, the result is the Fourier–Mukai
transform of Sym(V ). As another example, the structure sheaf of the copy
of V ∨ over 1 ∈ A (=the variety of opers) maps to D itself (it is Sym(V ∨)
tensored with the Fourier–Mukai transform of the skyscraper sheaf as an
O−module.

Flat vector bundles on A come from 0−dimensional sheaves on Ã∨. The
points of the support indicate the eigenvalues of the connection.

The inverse map requires care. Ordinary Fourier–Mukai would ignore the
connection on P which is clearly wrong. E.g. O would map to the whole
variety of opers (=connections on the trivial bundle). The correct Fourier–

Mukai transform form D(D − mod(A)) to D(CohÃ∨) couples the sheaf to
the De Rham complex along A before pushing down.

S → (RP2)∗ [(p∗iS)⊗ P ⊗ (Ω•
A, ∂)] ,

where Ω•
A denotes the holomorphic De Rham complex.

Geometrically this is a deformation of the following parametrized Fourier–
Mukai on O−modules over V ∨ :

A× A∨ × V ∨

↙ ↘
A× V ∨ A∨ × V ∨

↘ ↙
V ∨

.

Note that in the deformation the map A∨×V ∨ → V ∨ gets lots (becomes
non-holomorphic). Whereas the map A×V ∨ → V ∨ deforms to a ring homo-
morphism Func(V ∨) = Sym(V ) → D(A). It is a bit dangerous to think of
this as a map, because Sym(V ) is not central in D(A). But we can still use
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it. For any M ∈ Coh(V ∨) let M′ = D(A) ⊗Γ(D) Γ(M). This lifts coherent
sheaves on V ∨ to D−modules.
Fact: the Fourier–Mukai transform of such anM is supported on the oper
copy of V ∨ in Ã∨.

This construction generalizes to the non-Abelian case (Beilinson–Drinfeld
construction) and is one of the few geometrically well understood construc-
tions of Hecke eigensheaves in the non-Abelian case. The constructions for
the GL(n) case by Laumon–Lafforgue–Gaitsgory requires difficult cohomol-
ogy calculations.

5 Geometric Langlands V

In this lecture we discuss vector bundles on Riemann surfaces, flat versus
Higgs bundles, and the Hitchin system.

Narasimhan–Seshadri theorem

Let Σ be a fixed Riemann surface. Recall that by Narasimhan–Seshadri,
flat unitary vector bundles of rank n on Σ correspond to representations
of π1(Σ) into U(n), whereas flat holomorphic vector bundles correspond to
representations of π1(Σ) into GL(n). We denote

MU(n) := Hom(π1Σ, U(n))/conjugation by U(n).

The open subvariety M o
U(n) ⊂ MU(n) corresponding to irreducible represen-

tations is also the moduli space of stable algebraic (or holomorphic) vector
bundles on Σ of degree zero (c1 = 0). Here E is stable iff for any proper
holomorphic sub-bundle F ⊂ E we have

µ(F ) =
c1(F )

rk F
<
c1(E)

rk E
= µ(E).

The Narasimhan–Seshadri theorem also says that E carries a unique Hermitian–
Einstein metric (with curvature a constant multiple of the Kähler form on
Σ) and that the holonomy representation into the projective unitary group
is irreducible.

Complement to Narasimhan–Seshadri
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M o
U(n) is a manifold and inherits an algebraic structure from its interpre-

tation as moduli of algebraic bundles. The real analytic structures match.
MU(n) is compact and in fact projective, but singular. For degree c1 prime
to the rank, all holonomy representations are irreducible, and MU(n) is a
projective manifold.

Parabolic structures

Another method to make M projective and smooth is to add a parabolic
structure at one or more marked points. Chose and element g ∈ U(n) and a
point x ∈ Σ and consider the representation variety:

MU(n)(g) = {f ∈ Hom(π1(Σ− x), U(n)) : f(α) ∈ g, for α loop at x}/U(n).

These are the bundles with parabolic structure of type g at x.
The centralizer Z(g) of g in U(n) is a product of unitary groups (equal

to U(1)n if g has distinct eigenvalues) and the quotient Flg = U(n)/Z(g) is
the generalized flag variety of U(n). It is a full flag variety if g has n distinct
eigenvalues, and a Grassmanian if g has only 2 distinct eigenvalues.

Theorem 5.1 (Mehta-Seshadri–Ramanathan) The subset of irreducible el-
ements in MU(n)(g) is the space of isomorphism classes of stable parabolic
vector bundles with a flag of type Flg in the fibre over x ∈ Σ.

The variety Flg can be identified with the set of all flags 0 = F0 ⊂ F1 ⊂
· · · ⊂ Fk = Cn, where k is the number of distinct eigenvalues of g, and
dimFp/Fp−1 is the multiplicity of the p−th eigenvalue of g. Morally, we have
a fibre bundle

Flg ↪→ MU(n)(g)
↓
MU(n)

(∗)

but this is only strictly true on the complement of a closed subvariety of
the moduli space; it breaks whenever the vector bundle has holomorphic
automorphisms that are broken by the choice of flag. It also breaks because
the stability condition on the parabolic bundle is not the same as on the
underlying bundle.

Still the fibration (∗) holds on the ideal world of algebraic stacks which
remember the automorphisms of the bundle. This is important, because the
Hecke eigensheaf condition is defined in terms of these parabolic bundles.
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5.1 Hecke correspondence for GL(n)

For 1 ≤ k ≤ n, let Mk
d denote the moduli (stack) of algebraic vector bundles

of degree d on Σ equipped with a k−dimensional subspace in the fibre over
x. We can map Mk

d toM0 in 2 different ways:
i) Forget the subspace in the fiber over x.
ii) Consider the sheaf of sections with simple poles at x, whose principal

parts take values in the distinguished subspace. This results in a bundle of
degree d+ k.

The diagrams
Mk

d

p↙ ↘ q
M0

d M0
d+k

are the elementary Hecke transformations.

Note: There are Hecke correspondences associated to every co-weight of
GL(n). The elementary ones are associated to the fundamental co-weights
(1, 1, · · · , 1, 0, · · · , 0) and under Langlands duality to the exterior power maps
ΛkCn of the dual group (which happens to be GL(n) in this case). For GL(n)
we will be able to state the Hecke eigensheaf condition just in terms of the
elementary Hecke correspondences (which generate the ring of Hecke corre-
spondences). For other groups we need a generalization of the construction
which uses Schubert varieties of the Loop Grassmanian.

If you let x vary in Σ there is a universal Hecke correspondence. Set
M(k,Σ) to be the moduli of bundles with a flag at a point varying in Σ and
write:

M(k,Σ)
p↙ ↘ q

M0
d × Σ M0

d+k × Σ

and the Hecke V− eigensheaf condition on F is

Rq∗p
∗F = F×V,

where V is a vector bundle on Σ in the category of flat line bundles (D−modules),
and Rq∗ is the de Rham cohomology along the fibre.

For GL(1) the Hecke map H1: Jq → Jd+1 is an isomorphism.
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5.2 The stack of bundles

Even for GL(1) to get Fourier–Mukai to work properly, we had to take into
account the automorphisms of line bundles. That was quite easy, because
all line bundles have the same automorphism group, the centraliser of the
holonomy of the connection. It is even more important to do that now, when
the isomorphism groups vary with the bundle.

E.g. If V is a stable bundle, then V has only the scalar automorphisms.
For polystable bundles, the holomorphic automorphism group is the complex-
ification of the unitary automorphism group. For V = L⊕ L−1, the tangent
space to the automorphism group is Γ(Σ, End(V )) = Γ(Σ,O⊕O⊕L2⊕L−2)
which gets large with the degree of L. Note that it is the off diagonal part
that leads to this new behaviour.

Stacks were invented to describe moduli of objects with automorphisms.
The stack of vector bundles is any category (groupoid) in which:

X0= the objects, parametrize all vector bundles on Σ,
X1= the morphisms, parametrize all isomorphisms,
and such that X0, X1 and the composition have been given algebraic

structures.
Such models exist by a general “Quot-scheme” construction of Grothendieck,

refined by Gieseker. But, in this case it is easier to give concrete (analytic)
models.

5.3 Segal’s double coset construction

Let ∆ be a disc on Σ with boundary circle ∂∆ and denote Σ◦ = Σ−∆,

LGL(n) = smooth maps ∂∆→ GL(n)

GL(n)[∆] = boundary values of holomorphic maps ∆ → GL(n) with C∞

boundary values

GL(n)[Σ◦] = boundary values of holomorphic maps Σ◦ → GL(n) with C∞

boundary values, and

XΣ◦ := LGL(n)/GL(n)[Σ◦].
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GL(n)[∆] acts on the left on XΣ◦ and the stack of vector bundles on Σ is the
variety XΣ◦ with the action of GL(n)[∆].

E.g. Coherent sheaves on M are G(∆)- equivariant coherent sheaves
on XΣ◦ . The infinite dimensionality is misleading, because the action of the
group has finite dimensional slices everywhere.

By a theorem of Grauert, every holomorphic vector bundle on Σ becomes
trivial upon restriction to Σ◦ and to ∆. Grauert says that holomorphic vector
bundles on a Stein manifold are classified by their topological type. So, the
only information is in the gluing map, a smooth map ∂∆ → GL(n). But
changing the transition function by an automorphism on the right or left
leads to isomorphic GL(n) bundles. So,

M = GL(n)\LGL(n)[∆]/GL(n)[Σ◦]

is the set of isomorphism classes of vector bundles. Moreover, the stabilizer
of the GL(n)[∆] × GL(n)[Σ◦] action on GL(n) at some loop λ is precisely
the group of automorphisms of the bundle, because the two automorphisms
of either side assemble to give an automorphism of the bundle.

To the action of a group G on a space X we associate the “action
groupoid” with space of objects X, space of morphisms G×X, source maps
the projection to X, and target map the action (g, x) 7→ gx. In our case,
the action groupoid for GL(n)[∆] on XΣ◦ is equivalent to the stack of vector
bundles on Σ.

Remark 5.2 (ι) the notion of equivalence of stacks is delicate to define. It
requires some technology of Grothendieck topologies, sheaf theory,etc.
(ιι) The above construction can be made algebraic, turning a variant of XΣ◦

into a scheme and GL(n)[∆] into an algebraic group.
(ιιι) There is a much better known model forM, the Atiyah–Bott quotient
construction, which is better for many purposes, but can not be made alge-
braic.

5.4 Higgs fields and the cotangent stack of M
Unlike the Abelian case, the Langlands correspondence for arbitrary G does
not seem to have a formulation directly in terms of M. Instead, what is
involved is the total space of the cotangent bundle of M and its deformations:

29



non-Abelian to the differential operators onM, and Abelian to non-unitary
local systems on Σ.

The cotangent bundles has a natural partial compactification to the mod-
uli of Higgs bundles. There is a corresponding moduli stack of Higgs bundles,
which is just T ∗M. This is a beautiful example of a completely integrable
algebraic system, with a good reason for being so. It has been generalizes by
Simpson and Corlette to arbitrary Kähler manifolds in place of Σ, but many
of the beautiful features are present only for curves.

Definition 5.3 A Higgs field for a vector bundle E → X is a holomorphic
map θ:E → E ⊗ Ω1

hol with the property that θ ∧ θ:E → E ⊗ Ω2
hol is zero.

Obviously, for Riemann surfaces, the second condition is vacuous. This con-
dition comes from the fact that Ω is a degenerate flat holomorphic connection
on E over X.

F = (∂ + θ)2 = ∂2 + [∂, θ] + θ ∧ θ

If we scale θ by t, giving ∂ + tθ, and let t → ∞ we obtain the condition
θ ∧ θ = 0. The remarkable theorem is that (with a stability condition) this
degeneration can be reversed and a flat (non-unitary) connection can be
constructed canonically from θ and the Kähler metric on X.

Definition 5.4 A Higgs bundle (E, θ) is stable (resp. semistable) if every
θ−invariant subbundle has strictly lower slope (resp. ≤) than E. A Higgs
bundle is polystable if it is the direct sum of stable Higgs bundles.

Given a metric on a Higgs bundle, define a connection as follows: D1,0 =
∂+ θ, D0,1 = ∂̄+ θ̄, where ∂̄ = θ∗dz̄. Note that although ∂+ ∂̄ is Hermitian,
D = D1,0 + D0,1 is not Hermitian, because of the wrong sign in θ. The
curvature of D is F = [∂, ∂̄] + [θ, θ̄].

Definition 5.5 D is Hermitian–Yang–Mills if ωyF = λ · Id.

λ is then the first Chern slope c1(E)/(rk E) and D defines a structure on E
that is as flat as possible, subject to the topological constraint.
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Conversely, given a flat vector bundle E on X with connection D and a
metric not necessarily preserved by the connection, define θ:E → E ⊗ Ω1

such that the (1, 0) and (0, 1) parts of D satisfy:

D1,0 = ∂ + θ, D0.1 = ∂̄ + θ̄

and ∂ + ∂̄ is a Hermitian connection for the given metric. Indeed, θ is
uniquely determined by the condition: (∂−θ)+D0,1 is the unique Hermitian
connection compatible with D0,1 and then θ = (D1,0 − (∂ − θ))/2. Note that
θ need not be a Higgs field: θ̄ 6= 0; moreover, if dim X > 1, we might have
θ̄2 6= 0, and θ ∧ θ 6= 0.

The metric is harmonic (with respect to D) if θ̄ = ∂̄2 = θ∧ θ = 0. In this
case, then ∂̄, θ define a Higgs bundle. Note that a metric on E is the same
as a reduction of the GL frame bundle of E to a unitary frame bundle, that
is, a section of the contractible bundle with fibre GL(n)/U(n). This bundle
has a flat structure inherited from E.

Proposition 5.6 (Siu, Corlette, et al) The metric is harmonic iff the as-
sociated section of the GL(n)/U(n) bundle is harmonic in the differential
geometric sense, i.e. the Laplacian vanishing.

Theorem 5.7 (Higgs flat equivalence - Hitchin, Siu, Corlette, Donaldson,
Simpson)

1. A flat bundle has a harmonic metric iff the associated monodromy
representation π1X → GL(n) is completely reducible.

2. A Higgs bundle admits a Hermitian–Yang–Mills metric iff it is polystable
as a Higgs bundle. If c1 = c2 = 0 this metric is harmonic and the connection
is flat.

3. The moduli spaces of semisimple flat bundles and polystable Higgs
bundles are real-analytically isomorphic.

5.5 The Hitchin system

LetM be the moduli space of stable vector bundles of fixed rank and Chern
class on the Riemann surface Σ. Hitchin studied the differential and sym-
plectic geometry of T ∗M. Note that

T ∗EM = H1(Σ, End(E))∨ ' H0(Σ, End(E)∨ ⊗ L).
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So, a cotangent vector onM is a Higgs field on Σ!
There are some natural global holomorphic functions on T ∗M: any in-

variant polynomial on gln of degree d gives a map from T ∗M to H0(Σ, K⊗d)
by pointwise application to the Higgs field. The basic invariant polynomials
(the coefficients of the characteristic polynomial det(tI−A)) give a holomor-
phic map:

χ:T ∗M→
n⊕

d=1

H0(Σ, K⊗d).

The target H :=
⊕n

d=1H
0(Σ, K⊗d) is called the Hitchin space.

Note: dimH = 1 +
n∑

d=1

(2d− 1)(g − 1) = 1 + (g − 1)n2 = dimM. Recall that

on T ∗M we have a holomorphic symplectic form ω = dp ∧ dq = d(pdq) in
local coordinates (qa, p

a = dξa).

Theorem 5.8 (Hitchin) Assume g ≥ 2.

1. Global holomorphic functions on T ∗M are pulled back from H via χ.
Hence, Γ(T ∗M,O) = O(H).

2. χ is flat. In particular, all fibres have dimension dimM.

3. The fibres of χ are Lagrangian holomorphic subvarieties. Equivalently,
ω|fibre = 0 and the global holomorphic functions Poisson-commute.

4. The generic fibres are Zariski open subsets of Abelian varieties. The
global holomorphic Hamiltonians define linear flows along those vari-
eties.

Some ideas of the proof given by Beauville–Narasimhan: the symplectic
form ω is exact on T ∗M consequently, it is exact on MHiggs, but the fibres
are compact Kähler, so exact holomorphic differentials are null. Hence, the
fibres are Lagrangian.

In the case g = d = 2 or for singular spaces, then the argument of
Beauville–Narasimhan fails. However, there is a more general argument
based on hyperkähler reduction that goes through then.

Note: an algebraic version of 1. also holds with SymH∗ instead of O(H),
that is, with polynomials in place of holomorphic maps.
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6 Geometric Langlands VI

6.1 Relative compactification

Theorem 6.1 The moduli space MHiggs of semi-stable Higgs bundles con-
tains T ∗M, and the complement has dimension ≥ (g−1)(n−1). In particular,
χ extends to an algebraic map. In the case when the degree and the rank are
co-prime, then MHiggs is smooth.

Theorem 6.2 MHiggs is proper over H, henceMHiggs can be regarded as a
relative compactification of the Hitchin space H.

Corollary 6.3 All holomorphic functions on T ∗M are lifted from H.

6.2 Holomorphic symplectic construction of MHiggs

We recall the Atiyah–Bott construction of the moduli space of connections on
the topologically trivial bundle. Let gC = gl(n, C) and let A = {(0, 1)-forms
with values in gC}. Let GC denote the complex gauge group (automorphisms
of the bundle covering the identity), and L(GC) its Lie algebra. An element
ξ ∈ L(GC) acts by

α 7→ −(∂̄αξ + [α, ξ]) = [adξ, ∂̄α].

Inside A there is the open dense subset As parametrizing stable bundles.

Theorem 6.4 As/GC is isomorphic to the moduli space of stable vector bun-
dles.

Note that in the above construction vector bundles are topologically triv-
ial. In general for other Chern classes, one must replace GC and A with
connections and gauge transformations on a principal bundle of a chosen
topological type.

Now let T ∗A be the total space of the cotangent bundle

T ∗A ' Ω0,1(Σ, gC)× Ω1,0(Σ, gC)

which has the holomorphic symplectic form

(α, ϕ)(α′, ϕ′) 7→
∫

Σ

Tr(αϕ′ − α′ϕ)
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and the holomorphic moment map µ:A → L(G∗C) = Ω1,1(Σ, gC) given by

(α, ϕ) 7→ ∂̄ϕ+ [α, ϕ],

which is simply the dual to the derivative of the action of L(GC) on V ect(A).
Then

µ−1(0) = {ϕ : ∂̄αϕ = 0}

is the set of holomorphic Higgs fields, and

MHiggs ' µ−1(0)s/GC ⊃ T ∗(As/GC).

Corollary 6.5 Functions of ϕ alone Poisson commute.

6.3 Spectral curve and meaning of the fibres

Consider a Higgs field θ on a bundle E over Σ. Given (E, θ) we define a
coherent sheaf FE,θ on T ∗Σ (= total space of K) whose direct image to Σ
is E. The support of FE,θ depends on χ(θ) alone and plays the role of the
“set of eigenvalues” of θ. The sheaf FE,θ itself is defined via the eigenspace
decomposition of E and the spectrum of θ. Generically, where the spectral
curve has no simple singularities, this can be made precise with the naive
meaning of eigenvalue, but a sheaf theoretic formulation works in all cases.

Analogy: if E is a vector space, θ ∈ End(E) and Pθ the characteristic
polynomial of θ, then by Hamilton–Cayley, Pθ(θ) = 0. So, E becomes a
module over C[t], supported on the subscheme S = Spec(C[t]/Pθ(t)), which
is 0-dimensional of degree n. This is the “spectral scheme” of θ and E becomes
a coherent sheaf over it ( = module over C[t]/Pθ(t)).

If θ has distinct eigenvalues, then S is reduced, has n distinct points, and
E is a line bundle over S. When θ has repeated eigenvalues, S has nilpotents
and the sheaf FE,θ may not be a line bundle over S.

Example 6.6 (i) If θ =

[
a 0
0 a

]
, then S = C[t]/(t− a)2. In this case FE,θ

has torsion killed by (t− a) and the fibre at a has rank 2.

(ii) If θ =

[
a 1
0 a

]
, then S = C[t]/(t− a)2. In this case FE,θ is a line

bundle and the fibre at a is the “eigen-quotient” (not the eigen-vector).

34



Lemma 6.7 For θ ∈ gl(n), the following are equivalent:

1. All Jordan blocks of θ have maximum size.

2. The centralizer of θ is Abelian.

3. The centralizer of θ has dimension n.

4. θ is conjugate to 
p1 p2 · · · pn

1 0 · · · 0
0 1 0 0
...

. . . . . .
...

0 · · · 1 0

 (1)

Definition 6.8 θ is called regular if it satisfies the properties above.

In general, FE,θ is a line bundle on Spec(θ) iff θ is everywhere a regular
matrix.

Proposition 6.9 Matrices of the form (1) give a global section of the ad-
joint action of GL(n) on gl(n).

The projection gl(n) → gl(n)//GL(n) has a section called the Kostant
section. More generally, such a section exists for every reductive group G.
The principal sl2 ⊂ g decomposes g into ⊕C2mi+1 where the mi’s are the
exponents of g; they are 0, · · · , n − 1 for gl(n). The Kostant slice picks the
space generated by the highest weight vectors in each component. Hitchin’s
spectral cover construction is a global version of this construction.

Given E, θ over Σ at each point x ∈ Σ, θx:Ex → Ex ⊗ Kx makes Ex

into an algebra over C[Tx]. Varying x over Σ defines a Sym(T )-module. The
spectral curve for the Hitchin map T ∗M →

⊕
i Γ(Σ, K⊗mi+1) is the curve

on Tot(K) defined by the equation

θn + p1θ
n−1 + · · ·+ pn = 0.

The fibre of FE,θ over some (x, t) ∈ Tot(K) is just π∗(E)/(Mx, t− θ).

Theorem 6.10 For a generic value of χ(θ) the spectral curve is smooth,
irreducible, with simple branch points over Σ.
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7 Geometric Langlands VII

Recall the Hitchin map:

χ:T ∗M →
⊕n

d=1H
0(Σ, K⊗d)

θ 7→ coeffs. char. poly. of θ
.

A fixed value of χ determines a spectral curve S in Tot(KΣ) whose fiber over
each x ∈ Σ is the spectral scheme of θ in the line Kx.

The projection π:S → Σ is finite of degree n. The action of θ:E → E⊗K
turns E into a sheaf FE,θ over Tot(KΣ), supported on S; we have π∗FE,θ = E
over Σ. The singularities of π:S → Σ occur where eigenvalues coincide, that
is, on the zeroes of the discriminant of the characteristic polynomial of θ,
χθ = tn + p1t

n−1 + · · ·+ pn.
The discriminant is a section of Kn(n−1) so the curve S has n(n − 1)

branch points. For generic values of χ (away from the “discriminant locus”
in H) these are simple zeroes, and S is an n−fold branched cover with simple
branching over (2g − 2)(n− 1)n points of Σ. So, in this case, S is smooth of
genus g′ given by the Riemann–Hurwitz formula

2− 2g′ = n(2− 2g) + (2g − 2)(n− 1)n,

hence
g′ = n2(g − 1) + 1.

Example 7.1 For GL(2) the genus of S is 4g − 3.

When S is smooth, FE,θ must be a line bundle over S : it can have no
torsion because π∗FE,θ has none, and must have rank 1 because π∗FE,θ has
rank n. Conversely, for each line bundle L over the spectral curve, π∗L is a
rank n vector bundle over Σ, with Higgs field.

Proposition 7.2 When S is smooth π∗L is stable for generic L.

Remark 7.3 π∗L is always stable as a Higgs bundle, because a Higgs sub-
bundle of π∗L would have to be a subsheaf of L on the spectral curve.

We get a correspondence:
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{Higgs bundle with prescribed χ-image}
m

{line bundle on the spectral curve}

which is bijective, except for the stability issue mentioned above. At the
stack level — thus, without considering stability — this correspondence is
truly bijective, and we have

{Higgs bundle on Σ}
m

{sheaf on Tot(KΣ), which is torsion free of rank n over Σ }

Remark 7.4 deg π∗L = degL− n(n− 1)(g − 1), the defect arising because
of the branch points.

Remark 7.5 For SL(n) instead of GL(n) the condition det π∗L = 1 imposes
a condition on the Jacobian of the spectral curve that cuts out a linear
subvariety of codimension g. Because of the “defect” in the direct image,
this is not an Abelian subvariety.

Example 7.6 For SL(2) the spectral curve is a double cover branched at
4g − 4 points. Pairing them leads to a picture:

PICTURE GOES HERE
In this case, the covering S → Σ is actually Galois, with deck transfor-

mations the sign involution on KΣ : this is because Tr(θ) = 0 and so the
characteristic polynomial has the form t2 − det θ. Topologically, the involu-
tion switches the two copies of the base curve in the picture above. With
respect to this involution, the homology of the spectral curve decomposes as

H1(S) ' H1(Σ)⊗R⊕ (Z4g−4)−

where R is the regular representation of the Galois group Z/2, and the −
refers to the sign representation. So, topologically (but not holomorphically)

J(S) ' J(Σ)⊗R× J ′−,

for a torus J ′− with the sign action of Z/2.
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If we have a line bundle L with detπ∗L trivial, then all other line bundles
with this property have the form L′ = L ⊗ L′′ with σ∗L′′ = (L′′)−1 in the
degree zero Jacobian of S. This picks up an affine copy of the anti-diagonal
in J(Σ)⊗R and the entire component J ′−. Now, the principal polarisation on
J(S) is given by det−1 of the index bundle, detH1(S, L)/ detH0(S, L). Note
that, sinceH∗(S, L) ' H∗(Σ, π∗L), and det−1H∗(Σ, π∗L) is the Narasimhan–
Seshadri generator of Pic(MGL(n)), we see that the latter pulls back to be-
come the principal polarization in the Jacobian of the spectral curve. But,
observe that the principal polarization on J(S) does not restrict to a principal
polarization on the anti-diagonal in J(Σ). The moral is:

• The SL(2) Hitchin fibre is a Prym variety inside J(S);

• The principal polarization restricts to a line bundle of degree 2g.

Recall that a Prym variety is a fixed variety of a finite group action on
an Abelian variety. Here, the action is L′′ 7→ (σ∗L′′)× (a translation).

A priori, these Prym varieties are not Abelian (they have no distinguished
choice of identity); but these ones do have a base point once a

√
K has been

chosen. We’ll see a distinguished section of the Hitchin morphism associated
to any square root of K on Σ.

7.1 The zero fibre of the Hitchin map

We now discuss the zero fibre χ−1(0) of the Hitchin morphism. Note that the
Higgs field θ is nilpotent if and only if its characteristic polynomial is iden-
tically zero. In that case, the spectral scheme S0 is the n−th neighborhood
of the zero section. Choosing the trivial line bundle over S0 leads to

π∗O ' O ⊕K−1 ⊕ · · · ⊕K−n+1

on Σ, and the Higgs field

θ0 =


0 0 · · · 0
1 0 · · · 0
...

. . .
...

0 · · · 1 0


gives the shift K−i→̃K−i−1 ⊗K.
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Remark 7.7 This π∗O is stable as a Higgs bundle, but strictly unstable as
a bundle.

There are many possible types of sheaves FE,θ over S0 which are torsion
free over Σ. For definiteness, let us take GL(2). Then we have the following
discrete classification:

1. FE,θ restricted to the zero section has rank 2. In this case it is isomor-
phic to E, θ ≡ 0, and we get the zero section of the cotangent bundle
T ∗M. Note that, when the Higgs field vanishes, stability of E as a
bundle and a Higgs bundle agree.

2. FE,θ restricted to the zero section has rank 1, then it is a line bundle,
say L. It is torsion free, because π∗FE,θ = E is so. In this case L =
E/Im(θ:E ⊗K−1 → E), and we have an extension

0→ L′ → E → L→ 0

with θ:L→ L′ ⊗K the Higgs field.

Case 2 has several sub-cases. To simplify slightly, assume now that the
group is SL(2); then L′ ' L−1 and the existence of a non-zero θ implies
2 degL ≤ degK hence degL ≤ g− 1 and we have the following possibilities:

• If degL < 0 the Higgs bundle is unstable (L′ is a Higgs sub-bundle of
positive slope). Thus, over the unstable part of M the zero fibre of the
Hitchin morphism has lots of components.

• If degL ≥ 0, E could be (semi)-stable, and indeed those components
of the (stack of) Higgs bundles do appear in the 0−fibre of the stable
Higgs moduli space.

• Extreme case: if degL = g−1, then θ:L→ L−1⊗K is an isomorphism
and L = K1/2 is a square root of K; in such case E is an extension of
the form

K−1/2 → E → K1/2

with θ =

[
0 1
0 0

]
. This component is in the closure of the vector space

Ext1(K1/2, K−1/2) = H1(K−1) = H0(K⊗2)∨
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dual to the Hitchin space, and indeed the linear Hitchin Hamiltonians
give the linear flow on this vector space. The tangent to this compo-
nent of the 0−fibre is dual to the cotangent space of the case via the
symplectic form. In this sense, this vector space is the “limit” of the
Abelian varieties as they approach the 0−fibre.

At the “boundary” of these vector spaces (rescaling the extension class
in such a way that the Higgs field→ 0) we obtain a divisor in the moduli
space, namely, that of bundles which are extensions of K1/2 by K−1/2.
There is one such divisor for each

√
K in the SL(2) case, but all these

divisors coincide for PSL(2). Also, there is only one component for
GL(2), but it carries and extra Jac(Σ) factor from the determinant; the
components for SL(2) correspond to 2-torsion points in this Jacobian.

7.2 Geometric meaning of the zero fibre

There is a distinguished Morse function on the moduli space of stable Higgs
bundles, the square norm of the Higgs field, whose Hamiltonian for the Kähler
symplectic form is the circle action on T ∗M. The 0−fibre of χ is the union
of the unstable Morse strata, the unions of downward gradient flows from the
critical points. The top critical points are the bundles K−1/2 ⊕ K1/2 with

θ =

[
0 1
0 0

]
, the bottom critical set is the zero section of T ∗M. In particular,

MHiggs,stable is homotopy equivalent to χ−1(0). The Hodge structure on its
cohomology is pure. A topological consequence of this fact is that the circle-
equivariant cohomology of MHiggs factor as H∗(MHiggs) ⊗ H∗(BS1); this
helps in computations.

7.3 The Hitchin section

Let E = O ⊕ K−1 ⊕ · · · ⊕ K−n+1 for GL(n). (For SL(n) we would need
E = K(n−1)/2⊕ · · ·⊕K(−n+1)/2 and this requires a choice of

√
K for n even.)

Over each point (p1, · · · , pn) ∈
⊕n

d=1 Γ(Σ, K⊗d) of the Hitchin space, consider
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the Higgs field

θp =


p1 p2 p3 · · · pn

−1 0 · · · 0
0 −1 0 · · · 0
...

. . . . . .
...

0 · · · 0 −1 0

 (2)

on E. This is a regular Higgs field and defines a regular section of the Hitchin
map. Let now H = (H0, · · · , Hn−1) ∈

⊕n
d=1H

1(Σ, T⊗d−1) be a linear Hamil-
tonian on T ∗M

Proposition 7.8 Under the Hamiltonian flow exp(H) the pair (E0, θ) gets
sent to (EH , θ) where EH 'top E0 topologically, but with complex structure

∂̄H = ∂̄0 +H0 +H1θ + · · ·+Hn−1θ
n−1.

Note that here Hi ∈ H1(Σ, T⊗i) and θi ∈ H0(Σ, K⊗i ⊗ End(E)), hence
the products are in H1(Σ, E) giving a variation of the ∂̄ operator. For the
proof, compare with the expression of the symplectic form in the Atiyah–Bott
realization.

Proposition 7.9 The sweep of the Hitchin section consists of all (point-
wise) regular Higgs fields in the respective component.

Proof. A regular Higgs field determines a topological decomposition of the
bundle as

⊕n−1
j=0 K

−j. However, the only restriction on the ∂̄ operator is that
it should commute with θ. Now, by regularity of θ, the centraliser of θ in
End(E) = span < 1, θK−1, · · · , θ−n+1K⊗n > . So, in fact,

∂̄H = ∂̄0 +H0 +H1θ + · · ·+Hn−1θ
n−1

with Hi ∈ H1(Σ, T⊗i) as above.

8 Geometric Langlands VIII

8.1 The partial Poincaré bundle

Motivation: Let A be an Abelian variety with principal polarisation defined
by a line bundle L→ A. This principal polarisation defines an isomorphism

41



A→ A∨, and consequently we have the Poincaré line bundle P defined over
A× A∨. Let m:A× A→ A be the multiplication and p1, p2:A× A→ A be
the projections.

Proposition 8.1 P = m∗L⊗ p∗1L−1 ⊗ p∗2L−1.

For a proof see e.g. Polishchuck.
Now, in the case of the Jacobian, the principal polarisation is defined by

det−1 of the index bundle, where det is the determinant of the cohomologies
det = detH1(Σ,L)⊗ detH0(Σ,L) of the universal line bundle on Σ× J. In
the case A = J = the moduli space of line bundles, and m corresponding to
⊗, we can write

P = det−1(La1 ⊗ La2)⊗ det(La1)⊗ det(La2),

for a1, a1 ∈ J. Now on T ∗M we have the principal polarisation given by det−1

defined everywhere. Moreover, on (T ∗M)regular the subvariety of regular
Higgs fields has an Abelian group structure relative to the Hitchin map χ,
with the operation of tensoring 2 line bundles on the spectral curve. Note
that T ∗Mreg ×H T ∗Mreg consists of pairs of line bundles on the spectral
curve. We can in fact extend this operation to a partial addition

R := T ∗M×H T ∗M− T ∗Msing ×H T ∗Msing → T ∗M

by tensor product on the spectral curve. This continues to be well-behaved,
provided one of the sheaves FE,θ is a line bundle. (However, this operation
becomes discontinuous when both factors wander off into T ∗Msing; e.g. for 2
rank 2 vector bundles on Σ ⊂ Tot(KΣ), their tensor product has rank 4. So,
this rules gives no addition law m ×m → m on the moduli space of vector
bundles.)

So, we can define P over a dense open subset of T ∗M×H T ∗M. Note
that P is completely defined along the fibres of the projection to T ∗Mreg.
Consequently, we know the Fourier transform of any F ∈ Coh(T ∗M) when
restricted to T ∗Mreg, and the complete Fourier transform of sheaves sup-
ported in T ∗Mreg (e.g.points).

Nonetheless, we can not check too much about P ◦ P because part of
the fiber is missing. Exception: away from the discriminant locus in H,
where the fibers of χ are Abelian varieties, we get the Poincaré bundle for
the Fourier–Mukai transform.
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Corollary 8.2 On the complement of the discriminant locus in H, that is,
on the part of H corresponding to smooth spectral curves, P gives an equiv-
alence of derived categories.

For details for general G see Donagi–Pantev. For GL, SL, PGL see Hausel–
Thaddeus.

Example 8.3 Here are some interesting examples of Fourier transform:

• The structure sheaf of the Hitchin section transforms to O over T ∗M.
This follows from the fact that the Poincaré bundle is trivial on the
Hitchin section.

• The Fourier transform of O restricted to T ∗Mreg is the structure sheaf
of the Hitchin section, shifted in degree dimM.

Hitchin computed that R1χ∗O is the trivial vector bundle over H with fibre
H∨. (So, it works as if χ was a fibre bundle with fibre Abelian varieties.
Note that the vertical tangent bundle is isomorphic to H∨ via the symplectic
structure; and the principal polarisation identifies H∨ with H̄ and with H1

along the fibres.) This implies that H1(T ∗M,O) = C[H] ⊗H∨. This space
is also H1(M, SymT ) and is generated over H0(SymT ) as follows: the
polynomial generators of H0(SymT ) are contracted with the first Chern
class of the basic line bundle in H1(M, T ∗) to produce odd generators of
H1(T ∗M,O) over H0(SymT ). Now from the exponential sheaf sequence

H1(T ∗M,Z)→ H1(T ∗M,O)→ H1(T ∗M,O∗)→ H2(T ∗M,Z)

we see that H1 is computing holomorphic structures over the trivial line
bundle on T ∗M.

Proposition 8.4 Under Fourier–Mukai transform, the line bundle O(expH)
with H ∈ H∨ corresponds to the image of the Hitchin section by exp of the
H−Hamiltonian flow.

Note that both objects in this correspondence are analytic and not alge-
braic. This makes the quantum version more difficult. Insofar as the existing
kernel allows us to verify, we have the following equivalence:
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Theorem 8.5 (Frenkel – Teleman) H∗(T ∗M,O) = C[H]⊗ ΛH∨.

Here again, equality holds like as if we had a bundle of Abelian varieties. We
get also a non-trivial check of Ext groups. Denoting by σ the image of the
Hitchin section:

Proposition 8.6 ExtT ∗M(Oσ,Oσ) = C[H]⊗ ΛH∨

It seems likely (work in progress) that this implies the following strong result:
Fourier–Mukai from from coherent sheaves supported away from T ∗Msing to
coherent sheaves on T ∗M is a fully faithful functor.

Proposition 8.7 There is an equivalence of categories between Coh(Oσ)
and the full subcategory of O−modules on T ∗M that are presented by global
sections.

Recall that a sheaf S is presented by global sections if it is presented as

O⊕p → O⊕q → S.

8.2 Deformation of the Hitchin section: Opers

The section (⊕K−i, θp) with θp as in (2) has a deformation corresponding to
the Higgs bundle – flat bundle deformation leading to the moduli variety of
opers.

Definition 8.8 An oper structure on a flat vector bundle E (with group
GL(n)) is a full flag of subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

satisfying ∇(Ei) ⊂ Ei+1 and moreover such that

∇:Ei/Ei−1→̃Ei+1/Ei ⊗K

are isomorphisms.

Remark 8.9 It follows that Ei/Ei−1 ' E1/E0 ⊗ K⊗−i+1. So, the leading
component of ∇ corresponds to the subdiagonal row of 1’s in θp, see (2).
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Proposition 8.10 (Beilinson–Drinfeld) E carries and oper structure iff it
is given by the unique non-trivial successive extension of powers of K. All
such bundles carry a holomorphic connection ∇ and the oper structure (the
flag) is then unique.

Note: as a holomorphic bundle E is unstable.

Example 8.11 For SL(2) we must have

0→ K1/2 → E → K−1/2 → 0

and indeed,
Ext1(K−1/2, K1/2) ' H1(K) ' C

so the bundle E is unique up to isomorphism. The obstruction to having a
holomorphic connection is the Atiyah class in H1(Σ, K ⊗ End(E)). On the
associated graded bundle, K1/2 ⊕ K−1/2 this class is non-trivial. It corre-

sponds to the diagonal class

[
g − 1 0

0 1− g

]
in H1(Σ, diag(M2) ⊗ K). The

deformation to non-trivial extensions kills this class and lifts the obstruction
to existence of connections.

The space of connections on a fixed bundle E is an affine space over
H0(End(E) ⊗K). If the extension E were split, the latter space would be
H0(O)⊕H0(K)⊕H0(K⊗2); however, in the non-trivial extension, the first
summand is disallowed. (It maps isomorphically to H1(K) in the spectral
sequence.) Consequently, the space of oper structures on the fixed bundle E
is an affine copy of H0(K) ⊕ H0(K⊗2). To get the moduli space of opers,
we must divide by the group of automorphisms of E, which is the Abelian
group H0(K) (acting via multiplication by strictly upper-triangular matrices
on Hom(K−1/2, K1/2). This leads to an affine copy of the Hitchin space.

8.3 Global differential operators on M
This is the non-commutative side of the deformations of T ∗M. In the Abelian
case, the algebra of differential operators is the free algebra generated by the
tangent bundle, because on an Abelian variety global differential operators
have constant coefficients. A change in the non-Abelian case is that if G is
semi-simple

D(M) = Γ(D) = C.
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In the non-Abelian case, we must consider differential operators on
√
K. Re-

call that Pic(M) = H2(M) ' Z. The class [
√
K] = −c ∈ Pic(Z) where c is

the dual Coxeter number of G. Denote by D−c(M) the algebra of differential
operators on

√
K.

Theorem 8.12 (Beilinson–Drinfeld) D−cM is the algebra of polynomial func-
tions on opers. The latter is an affine space for H.

Theorem 8.13 (Frenkel–Teleman) H∗(M,D−c) is the polynomial ring of
differential forms on opers.

Beilinson and Drinfeld constructed partial Fourier–Mukai transforms giving

Coh(Op) → D−c −modules onM
point 7→ Hecke eigensheaf

.

Their construction is the same one that works on the Abelian case. Recall
that Γ(M,D−c) = C[Op] and set

M̃ := D−c

⊗
Γ(M,D−c)

Γ(Op,M). (3)

[BD] proved that M̃ is a Hecke eigensheaf.

Example 8.14 In the Abelian case, Op = constant holomorphic 1-forms
on A = connection forms on the trivial line bundle. A point in Op is a
flat connection = the trivial line bundle, together with the respective flat
connection. In 1-dimension, with the connection form α being the constant
derivative on O

D ⊗C[∂] Cα = D/(∂ − α) ' O,

but with ∂ acting as α.

8.4 Differential operators on M from the center of
U(Lg)

If g is semi-simple, then Z(g) := Z(U(g)) = (Sym g)G consists of polynomials
in rank g generators. The quadratic Casimir is ∆2 =

∑
ξaξbh

ab defined using
the invariant bilinear form hab. Moving on to the loop algebra Lg, we note
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that U(g) has no center, indeed, the invariant forms would be
∑

n ξa(n)ξb(m−
n)hab but, at any rate are infinite sum. To keep the algebra structure and
allow infinite sums, some restrictions are needed.

We complete U(Lg) by considering its action on highest weight represen-
tations. For practical purposes we use the Fourier grading V = ⊕n≤0V (n)
and ξ(m)V (n) ⊂ V (n+m). Then sums

∑
m>0 ξm(m) and

∑
m>0 ηm(km)ξm(m)

are allowed. In particular, Lm =
∑
ξa(m)ξb(m−n)hab is allowed. But it turns

out that the infinite sums make the commutation relations nontrivial.

Example 8.15 [Lm, ξ(n)] = c·nξ(m+n) so Lm acts as zm+1 ∂
∂z

and generates
a copy of the Virasoro algebra inside U(Lg).

But, at central extension of Lg at level c the commutators miraculously
vanish and we obtain:

Theorem 8.16 (Feigen–Frenkel) Elements of Z(U−c(Lg)∧) are functions on
the space of opers on the circle.

From central elements of U(Lg) we can construct differential operators on
M as follows. Let S1 be a circle bounding a disc ∆ on Σ so that Σ = Σ0∪s1∆.
Now, use Segal’s double coset construction from paragraph 5.3, which gives
and isomorphism of analytic stacks from isomorphism classes of G bundles
on Σ to double cosets Hol(Σ0, G)\LG/Hol(∆, G). This construction has the
technical advantage that it can be made algebraic. We can replace LG by
the formal loops G((z)) in G, also Hol(Σ0, G) by algebraic maps with poles
at the centre of ∆, and Hol(∆, G) by the formal Taylor loops G[[z]].

Definition 8.17 X = G((z))/G[[z]] is an algebraic variety with aG[[z]]−action,
called the Loop Grassmanian.

It is an analogue to flag varieties of algebraic groups, the Grassmanians for
GL(n). Then T ∗M arises by holomorphic symplectic reduction of T ∗X: we
have a moment map

µ:T ∗X→ (Lg)∗ = g[[z]]dz

for the action of GL[[z]]; the image in the coadjoint orbit of g[[z]]dz = T ∗1 X.
Reduction with respect to G[Σ0] intersects the image of µ with Γ(Σ0, g⊗K)
and divides by G[Σ0]. The reduction of (Lg)∗ is

⊕
d Γ(Σ0, K⊗d) and we get
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a map T ∗M→
⊕

d Γ(Σ0, K⊗d), but, in fact, the image lies on the subspace⊕
d Γ(Σ, K⊗d). The map factors throughH →

⊕
d Γ(Σ0, K⊗d) because it was

previously in the orbit of G[[z]]. The resulting map is the Hitchin morphism.
In the quantum analogue, T ∗M→D(M) replaces the moment map T ∗X→
(Lg)∗ by an algebra morphism

U(g)→ Γ(X,D)

or more generally with a line bundle O(h) over X, and a map

Uh(g)→ Γ(X,Dh),

where Uh(Lg) is the universal enveloping algebra at level h and Dh the uni-
versal sheaf of differential operators on O(h). Any central element in Uh(Lg)
gives rise to a G[[z]]−invariant differential operator on X. Invariance implies
that the operators descent to the quotientM. So, we have an algebra homo-
morphism

Z(Uc(Lg))→ DcM,

where the subscript c denotes the central extension at the critical level which
corresponds to the dual Coxeter number. But, in fact, just as in the classical
case, this factors through restriction from opers in the circle to the finite
dimensional subspace of opers on Σ. This is the Beilinson–Drinfeld homo-
morphism.

9 Geometric Langlands IX

This is the last lecture, which includes a brief review and it is organized as:

1. Motivation for geometric Langlands

2. Translation to characteristic 0 and Kac–Moody algebras. Beilinson-
Bernstein correspondence; Lie algebra representations andD−modules.
Classical moment map picture and central characters.

3. Loop group analogue of the Beilinson–Bernstein construction. State-
ment of Feigin–Frenkel theorem comparing the center of U(Lg) to D(X)
in genus 0. Comments on arbitrary genus and relation to representa-
tions.
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4. Segal double coset construction ofM, and T ∗M by symplectic reduc-
tion. Moment map and functions on T ∗M. Quantization and construc-
tion of differential operators from central elements.

0. Two complements on opers:

• The “complete extension” E0 ⊂ E1 ⊂ · · · ⊂ En = E with Ek/Ek−1 =
K⊗−i is the truncated jet bundle of the Riemann surface (n−th order
jets of functions, dual of differential operators of order ≤ n + 1). The
structure group can be reduced to SL(2) (the Riemann surface itself
is a quotient of SL(2,R)). For general g the structure group is defied
from the same jet bundle, couple to the principal SL(2) subgroup of
G.

• There is a good geometric reason why, on global sections, the only Hecke
eigenvalues that are visible correspond to opers (the jet bundle). The
global geometry of the Hecke correspondence over the curve ensures
that.

Again, the only Hecke eigen Dc−modules we see through global sec-
tions are those corresponding to opers. This is in fact required by the
Langlands equivalence and the fact that D corresponds to the structure
sheaf of the subvariety of opers. It F is a Dc−module, then

Γ(M,F) = HomDc−Mod(Dc,F) = HomMflat
(Oop, F̃ = 0

if F̃ does not meet Op.

9.1 Original motivation for Langlands correspondence

The original statement of Langlands, claimed a bijection between certain
automorphic representations of GL(n) and certain n−dimensional represen-
tations of Galois groups. Consider a finite field k and a smooth proper curve
Σ over k. For x ∈ Σ we have the local ringOx and its completion Ôx; e.g. over
C, with z a coordinate centered at x we have Ôx = C[[z]] ⊂ C((z)) = k̂(Σ)
where k(Σ) is the field of rational functions on Σ.

In the automorphic representation side we have the “adèles” A = Πx∈ΣK̂x

where all but finitely many entries are polynomials. We have O = ΠÔx ⊂ A
the “regular” subrings. We want representations of GLn(A) = ΠGLn(K̂)
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which appear in L2 (GLn(A)/GLn(k(Σ))) . Langlands predicts a bijection
between:

{automorphic cuspidal representations of G(A)}
m

{irreducible representations of Gal(k(Σ)) into LG}.

Here cuspidal means not induced by a parabolic. Automorphic means occur-
ring in L2 (GLn(A)/GLn(k(Σ))) . Unramified representations correspond to
unramified representations.

Theorem 9.1 (Weil) G(O)\G(A)/G(k(Σ)) = set of isomorphism classes of
principal G bundles on Σ.

Geometric Langlands over C can be motivated in several ways, but one
guiding insight is: G(Kx) does not correspond directly to the loop group
G((z)) of Laurent series in z, but instead to its (Kac–Moody) Lie algebra. Un-
ramified presentations become “vacuum representations” (negative energy)
of highest weight U(g)⊗g[[z]] C. This insight turns out to be half correct, we
do not have the complete formulation rot the moment.

9.2 Bernstein–Beilinson correspondence for reductive
group

Let G be a complex reductive group (take GL(n) if you wish), and let X :=
G/B be the full flag variety (for GL(n) B is the subgroup of upper triangular
matrices).

Theorem 9.2 There is an equivalence between the category of representa-
tions of g with trivial central character and the category of D−modules on
G/B.

On one side, the map is M 7→ D ⊗D(X) M, and the inverse is given by
localization. Notes:

1. g acts by infinitesimal translations on G/B, giving g → V ect(X). So,
it acts on global sections of any D−module.
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2. D(X) = U(g) ⊗Z C0 where Z is the centre of U(g), and C0 is the 1-
dimensional module of Z corresponding to the trivial character (the
trivial representation of Z).

3. (Harish-Chandra isomorphism) Z ' (Symg)G is a polynomial alge-
bra on rank g generators, the classical Casimirs. This is the famous
Harish-Chandra isomorphism. Note that it is not trivial to produce
an isomorphism of algebras, even though it is easy to get a linear map
(Symg)G → U(g)G by symmetrization.

4. (D− affinity of X) If A is a D−module and i > 0 then RiΓ(A) = 0.

5. There is a similar statement as in theorem 9.2 for every central charac-
ter of g. For most central characters (dominant ones) it takes the same
form, but for certain (regular, but not integrally dominant) characters,
one must weaken it to an equivalence of derived categories.

For singular central characters — the most singular of which corre-
sponds to

√
K(−ρ) — Γ is an exact functor but not an equivalence: it

collapses parts of the category (trivializes a “right action” of the Weyl
group on X).

Example 9.3 For G = SL(2) with Casimir operator ∆ = e−e+ +e+e−+ 1
2
h,

where

h =

[
1 0
0 −1

]
e+ =

[
0 1
0 0

]
e− =

[
0 0
1 0

]
,

the center is Z = C[∆].

9.3 The classical picture

D is the quantization of T ∗X. There is a moment map µ:T ∗X → g∗ for the
translation action of G.

Proposition 9.4 T ∗X maps to the nilpotent cone N ⊂ g∗.

Notes:

1. N is the closure of the G−orbit of any regular nilpotent element in g∗.
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2. N = the zero locus of the positive elements in (Symg)G ' SpecC(g)/I(∆i)
where ∆i are the classical Casimirs ' the fibre of the quotient map
g∗ → g∗//G.

The quantization of this statement is

D(X) = Γ(X,D) = U(g/(∆i)

and this quantum statement is much better behaved, because there are more
vanishing of cohomologies.

Note again that elements of U(g) give global differential operators on X
whereas central elements give left-invariant operators. However since the ac-
tion of Z factors through the central character, we only get constant (scalar)
differential operators from the center.

The classical picture has commutative deformations as well, where we
replace N by a regular semisimple orbit. In the process, T ∗X deforms to
G/T and µ becomes an isomorphism. Such deformations should be regarded
as a variation of the central character in the quantum case, and they morally
explain the absence of cohomology: the classical limit is affine.

9.4 Loop groups

The loop group analogue of the Beilinson–Bernstein construction is relevant
to the geometric Langlands program. We revisit the Segal double coset con-
struction from 5.3. First some notation:

LG = group of smooth loops in G
G((z)) = group of smooth Laurent polynomial loops
G(∆) = holomorphic maps from the disc ∆ to G
G[[z]] = group of smooth Taylor polynomial loops
G(Σ∗) = holomorphic maps from Σ minus a point to G

Theorem 9.5 (Segal double coset construction) Let M be the moduli stack
of G−bundles on Σ, then

M ' G[Σ∗]\LG/G(∆).

The objects in M are G[Σ∗]−equivariant objects in X = LG/G(∆) and
G(∆)−equivariant objects in LG/G[Σ∗]. Classically, we have a moment map
for the LG action:

µ:T ∗XLg∗ = Ω1(S1, g)
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by residue pairing. The image is the LG−orbit of g[[z]]dz and is a complete
intersection defined by the inverse image of the subspace

⊕
d Γ(∆, K⊗d) in

Lg∗
(∆i)−→

⊕
d Γ(S1, K⊗d).

However, unlike the finite dimensional case, the map is not a birational
equivalence with the image. To see this, consider the deformation of complex
structures modulo the LG action. Then

T ∗X→ g− connections on the disc

Lg∗ → connections on the circle with gauge action

The deformed moment map is an isomorphism of LG/G with the orbit
of the trivial connection. Note that a connection on the disc is equivalent to
an affine line bundle with fibre g[[z]]dz over X.

The new image of µ is much bigger, the limiting case has large vertical
fibers, in particular imµ has finite codimension. In the limit

C[T ∗X] = C[Lg∗]⊗C[ΓS1 ] C[Γ∆]⊗ C[ΓS1/Γ∆].
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