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ABSTRACT. A recent theorem of [GGS2] showed that adjoint orbits of
semisimple Lie algebras have the structure of symplectic Lefschetz fibra-
tions. We investigate the behaviour of their fibrewise compactifications.
Expressing adjoint orbits and fibres as affine varieties in their Lie alge-
bra, we compactify them to projective varieties via homogenisation of the
defining ideals. We find that their Hodge diamonds vary wildly according
to the choice of homogenisation, and that extensions of the potential to the
compactification must acquire degenerate singularities.
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1. HODGE DIAMONDS OF LEFSCHETZ FIBRATIONS

Given a symplectic manifold X, a symplectic Lefschetz fibration (SLF) on
X is a fibration f: X — C that has only Morse type singularities such that the
fibres of f are symplectic submanifolds of X outside the critical set, see [Sel.
We constructed a large family of new examples of noncompact SLF's in the
recent paper [GGS1] and needed to compactify them to find the topological
information provided by their Hodge diamonds. Our motivation — coming
from mathematical physics — was to study categories of Lagrangian vanishing
cycles. These play an essential role in the Homological Mirror Symmetry
conjecture [Ko], where such a category appears as the Fukaya category of a
Landau-Ginzburg (LG) model (that is, a Kdhler manifold X equipped with
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a holomorphic function f: X — C called the superpotential). SLFs are nice
examples of LG models since a rigorous definition of the Fukaya category of
Lagrangian vanishing cycles is known only for SLF's and not in any greater
generality.

[GGS1] showed the existence of the structure of SLF's on adjoint orbits of
semisimple Lie algebras. These adjoint orbits are not compact. In fact, they
are isomorphic to cotangent bundles of flag varieties [GGS2]. We want to
compare the behaviour of vanishing cycles on X and on its compactifications.
Expressing the adjoint orbit as an algebraic variety, we homogenise its ideal
to obtain a projective variety, which serves as our compactification. To obtain
topological information about the compactifications, we calculate their Hodge
diamonds, as well as the Hodge diamonds of the compactified fibres of the
SLF. Calculating such Hodge diamonds is computationally heavy, so we used
Macaulay2. Details of the computational algorithms we used appear in [CG].
Topological data for the total space X as well as for the fibres of the SLF can
be read off the Hodge diamonds.

Remark 1. Choosing a compactification is in general a delicate task: a different
choice of generators for the defining ideal of the orbit can result in completely
different Hodge diamonds of the corresponding compactification. This happens
because the homogenisation of an ideal I can change drastically if we vary the
choice of generators for I (see Section 6.2).

In Section 2, we present the principal theorem that furnishes us with exam-
ples. In Section 3, we find all adjoint orbits of sl(2,C) (up to isomorphism), and
apply our compactification process to this simple case. In Section 4, we con-
sider a more involved example of an adjoint orbit inside s((3,C), corresponding
to the minimal flag variety, and show that any extension of the potential to the
compactification of the orbit must acquire degenerate singularities, hence it
would no longer remain a Lefschetz fibration. This is generalised in Section 5
to the minimal flag variety of sl(n + 1,C). We illustrate with an example in
Section 6 just how delicate a tast compactification can be.

2. LEFSCHETZ FIBRATIONS ON ADJOINT ORBITS

Let Hp be an element in the Cartan subalgebra of a semisimple Lie algebra
g, and let O(Hj) denote its adjoint orbit. It is proved in [GGS1] that for each
regular element H € g, the function f7: O(Hy) — C given by fr(x) = (H,x)
gives the orbit the structure of a symplectic Lefschetz fibration. This includes
the following properties for fz:

(1) The singularities are (Hessian) nondegenerate.

(2) If ¢1,c9 € C are regular values then the level manifolds f}}l (c1) and
fﬁl (c2) are diffeomorphic.

(3) There exists a symplectic form Q in ¢ (Hg) such that if ce C is a
regular value then the level manifold f I}I (c) is symplectic; that is, the
restriction of Q to fﬁl (c) is a symplectic (nondegenerate) form.

(4) If c € C is a singular value, then fﬁl (c) is a union of affine subspaces
(contained in @ (Hy)). These subspaces are symplectic with respect to
the form € from the previous item.
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We compactify the orbit by projectivisation; that is, we homogenise the
polynomials with an extra variable ¢ to obtain a projective variety.

3. COMPACTIFICATION OF THE ORBIT OF sl(2,C)

Inside sl(2,C), all adjoint orbits are of the same ismomorphism type, which
we now describe as an SLF with 2 critical values. In sl(2,C), take

1 0
H:HOZ(O —1)’

which is regular since it has 2 distinct eigenvalues. The orbit G(Hj) is the set
of matrices in sl(2,C) with eigenvalues 1 and —1, which forms a submanifold
of complex dimension 2 of s((2,C).

The Weyl group # =S, acts via conjugation by permutation matrices. The
two singularities are thus H and —H.

We can also express the orbit as an affine variety embedded in C3. Writing
a general element A € G(Hy) as

the characteristic polynomial of A is
—(x-A)(x+1)-yz=det(A-1id) = 12 -1,

the first equality being derived from explicit calculation and the second due
to the fact that trA = 0 and detA = —1. This in turn implies that the orbit
O(Hy) c sl(2,C) = C? is an affine variety X cut out by the equation

x> +yz-1=0. (1)

We can compactify this variety by homogenising eq. 1 and embedding X
into the corresponding projective variety. This gives the surface cut out by
x?+ yz—t?=01in 3. The Hodge diamond of this compactification is shown in
figure 1.

1
0 0
0 2 0
0 0
1

FIGURE 1. The Hodge diamond of the projectivisation of
O(Diag(1,-1)).

The height function is

1
fH(A):trHA:tr(O _01) (’ZC _yx):2x.

Note that the two critical points belong to distinct fibres. We can also write
the regular fibre (over zero) as the affine variety in {(y,z) € C2} cut out by the
equation

yz—1=0
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since it must satisfy eq. 1 and x = 0. As with the orbit, we homogenise this
equation and embed the fibre into the corresponding projective variety cut out
by the equations x = 0 and yz —#? = 0 in 3. This yields the Hodge diamond
shown in fig. 2. Note that these compactified fibres have no middle homology.

1
1

FI1GURE 2. The Hodge diamond of the projectivisation of the
regular fibre over zero, where H = Hy = Diag(1,-1).

4. SMOOTH COMPACTIFICATION OF AN s5((3,C) ORBIT

The adjoint orbits of sl(3,C) fall into one of three isomorphisms types. Here
we present an SLF with 3 critical values. In sl(3,C), consider the orbit G(H)

of
2 0 0
Hy= (0 -1 0 )
0 0 -1
under the adjoint action. We fix the element

1 0 O
H=(0 -1 0

0 0 O
to define the potential fz7. A general element A € s[(3,C) has the form
X1 ) Y2
A=|z1 x2 y3 . (2)
zo 23 —X1—X3

In this example, the adjoint orbit G(H() consists of all the matrices with the
minimal polynomial (A +id)(A —2id). So, the orbit is the affine variety cut
out by the ideal I generated by the polynomial entries of (A +id)(A — 2id). To
obtain a projectivisation of X, we first homogenise its ideal I with respect to a
new variable ¢, then take the corresponding projective variety. In this case, the
projective variety X is a smooth compactification of X. We used Macaulay2
[M2] to calculate the Hodge diamonds of a compactification of the adjoint orbit
O(Hy), obtaining:
1

0 2 0
0 0 3 0 0.
0 2 0

1

We now calculate the Hodge diamond of a compactified regular fibre. The
potential corresponding to our choice of H is fz7 = x1 —x2. The critical values of
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this potential are +3 and 0. Since all regular fibres of an SLF are isomorphic,
it suffices to chose the regular value 1. We then define the regular fibre X; as
the variety in sl(3,C) = C8 corresponding to the ideal J obtained by summing
I with the ideal generated by fz —1. We then homogenise / to obtain a
projectivisation X of the regular fibre X;. The Hodge diamond of X7 is:

1
0 0
0 2 0
0 0 0 0
0 2 0
0 0
1

Remark 2. We used the same method to calculate the Hodge diamonds for the
singular fibre over 0 and obtained the same Hodge diamond as for the regular
fibres.

Remark 3. More details of this example appear in [C].

5. GENERALISATIONS AND COMPUTATIONAL COROLLARIES

We generalise our example of s((3,C) to sl(n +1,C). To obtain the case
where the adjoint orbit is isomorphic to the cotangent bundle of the minimal
flag, we set Hy = Diag(n,—1,...,—1) and H = Diag(1,-1,0,...,0). Then the
diffeomorphism type of the adjoint orbit is given by G(H() = T*P" (see [GGS2]),
and H gives the potential x; —x2 as before. If we compactify this orbit to
P" x (P™)*, then the Hodge classes of the compactification are given by AP-P =
n+1-|n—p| and the remaining Hodge numbers are 0. An application of
the Lefschetz hyperplane theorem determines all but the Hodge numbers of
the middle row of the compactification of the regular fibre, and computations
shows the latter are zero.

The following two corollaries follow immediately from observing the Hodge
diamonds we obtained.

Corollary 1. Let Hy = Diag(n,—1,...,—1) and H = Diag(1,—1,0,...,0) in sl(n+
1,C). Then the orbit of Hy in sl(n + 1,C) compactifies holomorphically and
symplectically to a trivial product.

Proof. For the examples we considered here, [GGS2] showed that ©G(H() can be
embedded differentiably into P” x P"*. As an outcome of our computations, we
verify that the compactifications are also holomorphically and symplectically
isomorphic to P" x P**. In fact, our package produces a compactification of the
orbit embedded into P®*1”~1 and the diamond shows that the compactified
orbit has the topological type of a P” bundle over P”, implying the bundle is
trivial. U

Corollary 2. An extension of the potential fyg to the compactification P™ x P"**
cannot be of Morse type; that is, it must have degenerate singularities.

Proof. Our potential has singularities at wHy,w € #'. Now observe that the
Hodge diamond of our compactified regular fibres have all zeroes in the middle
row, hence any extension of the fibration to the compactification will have



COMPACTIFICATIONS OF ADJOINT ORBITS AND THEIR HODGE DIAMONDS 6

no vanishing cycles. However, the existence of a Lefschetz fibration with
singularities and without vanishing cycles is precluded by the fundamental
theorem of Picard—Lefschetz theory. O

6. SINGULAR COMPACTIFICATIONS OF sl(3,C) ORBITS

We show that the topology of the compactified regular fibre for fz; can
change drastically according to the choice of homogenisation of the ideal
cutting out the orbit as an affine variety. The compactifications obtained in
this section turn out to be singular.

6.1. A fibration with 4 critical values. In s((3,C) we take

1 00
H=Hy=| 0 -1 0 |,
0 0 O

which is regular since it has 3 distinct eigenvalues. Then X = € (H)) is the set
of matrices in s[(3,C) with eigenvalues 1,0,—1. This set forms a submanifold
of real dimension 6 (a complex threefold).

In this case # = S3, the permutation group in 3 elements, and acts via
conjugation by permutation matrices. Therefore, the potential fz7 = x1 —x9 has
6 singularities; namely, the 6 diagonal matrices with diagonal entries 1,0,—1.
The four singular values of fi7 are +1,+2. Thus, 0 is a regular value for ff.
Let A € 5l(3,C) be a general element written as in (2), and let p = det(A),
q = det(A —id). The ideals {p,q) and {p — q,q) are clearly identical and either
of them defines the orbit though H as an affine variety in s[(3,C). Now

I:<paqafH> JZ(pJ"Q:fH)

are two identical ideals cutting out the regular fibre Xy over 0. Let I}y and
Jnhom be the respective homogenisations and notice that I1,om # Jhom, S0 that
they define distinct projective varieties, and thus two distinct compactifications

—7 .
X =Proj(Clx1,x2,¥1,¥2,¥3,21,22,23,t)/Ihom) and

_J .
X =Proj(Clx1,x2,y1,¥2,¥3,21,22,23, tV/Jhom)

of Xy. Their Hodge diamonds are given in figure 3. Remark 4 explains the
question marks.

Remark 4 (Computational pitfalls). Macaulay2 greatly facilitates calculations
of Hodge numbers that are unfeasible by hand. However, the memory require-
ments rise steeply with the dimension of the variety — especially for the Hodge
classes h??. In fact, the unknown entries in our Hodge diamonds (marked
with a ‘?’) exhausted the 48GB of RAM of the computers of our collaborators
at IACS without producing an answer.

6.1.1. Expected Euler characteristic. To reassure ourselves about the much

. . I . . =J
larger values occurring for the diamond of X in comparison to X, we perform
the rather amusing calculation of the expected Euler characteristic of both
varieties, which give out quite surprising numbers.
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1 1
0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0
0 16 ? ? 16 0 0 1 ? ? 1 0
0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0
1 1

—I
FIGURE 3. The Hodge diamonds of two projectivisations X,

(left) and )_(g (right) of the regular fibre corresponding to H =
H, =Diag(1,-1,0).

Remark 5. LetY =Y{n---NnY, be a complete intersection. If Y is smooth, then
the Euler characteristic of Y is uniquely determined by its cohomology class.
However, for a singular variety this is no longer true, and the cohomological
classes Y; do not determine the topological Euler characteristic. They deter-
mine only what is called the expected Euler characteristic of Y (equal to the
Fulton—Johnson class), see [Cy].

To calculate the expected Euler characteristic we use the following basic
formulae from intersection theory. Let X := ¥(f1,...,f%) € P"** be a complete
intersection with inclusion i: X — P"*%. Define a :=i* (c1 (Opn++(1))) € H?(X).
Then

f a™"=d, 3)
X

where d = ]_[]f d; and d; = deg f;. Moreover,

B (1+a)n+k+1 _
C(X)—m—1+01(X)+"‘+Cn(X), (4)

and the Euler characteristic is given by
100 [ e ), (5)
X

where ¢; (X) € H?(X) is the i-th Chern class.

Example 3. We first illustrate the formula with two elementary cases.

For a conic C in P2, expression 4 produces (1+ a)?/(1+2a), whose expansion
at zero is 1+ a + a? + o(a®). Here, J @ =2 and we get y(C) = 2, which was to be
expected since the conic is topologically isomorphic to P!.

For the quartic @ in 3, expression 4 gives (1+ a)*/(1+4a), whose expansion
at zero is 1+ 6a? + o(a®). Here, fa2 =4 and so y(®) =6 x4 =24, which was to
be expected since the quartic is a K3 surface, whose Hodge diamond is well
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known to be

1
0 0
1 20 1
0 0
1

. . . =2 = .
Now let us return to our two projectivisations X, and X. For the ideal
Itom we have degrees d; =d2 =3 and ds = 1. The orbit was embedded in P8,
So expression 4 gives

()—(1)_ (1+a)? 1+
‘)T a3 +30)(1+a) (1+8a)2

The Taylor series expansion around zero is given by 1+2a+7a®—4a>+31a* -
94a® + o(a®). Here f a® =9 and we get the expected Euler characteristic to be

1(Xo) = -94x9=-846.

On the other hand, for the ideal Jy,,, we have degrees d1 =2, dg =3, and
ds = 1. Expression 4 gives

—J 1+a) 1+a)8
C(X()) = = .
1+2a)1+3a)1+a) (A+3a)1+2a)

The Taylor series expansion around zero is 1+ 3a + 7a® + 3a® + 13a* - 27a% +
o(a®). In this case, fa5 =6 and we obtain

1(Xo)=-27x6=-162.

. +J 1) . .
The difference between )((X 0) and x(X 0) is another concrete topological
difference between our two compactifications.

6.2. A fibration with 6 critical values. In s((3,C) we take

3 0 0
Ho=|0 -1 0 |,
0 0 -2

which is regular since it has 3 distinct eigenvalues. Then € (H) is the set of
matrices in s[(3,C) with eigenvalues 3,—1,—2. We now choose

1 0 O
H=(0 -1 0|,
0 0 O

giving the potential f(A) = x1 — x2, with critical values +1,+4,+5. This
fibration is only mildly different from the previous one by the fact that 2
singular fibres contain 2 singularities each. The orbit is diffeomorphic to the
one of subsection 6.1, The regular fibres are pairwise diffeomorphic.

Asin 6.1, let A €5l(3,C), and p =det(A +id), g = det(A +2id). Once again,
the ideals {p,q) and {p — q,q) are clearly equal and either of them defines the
orbit though H as an affine variety in s[(3,C). The matrix A belongs to the
regular fibre X if in addition it satisfies f7 = x1 —x9 = 0. Now, let

I:<paqafH> JZ(ILP“LfH)
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be two equal ideals cutting out the regular fibre X, through 0 and let I}y,
and Jyom be the respective homogenisations. However, Iom # Jhom, S0 they
define distinct projective varieties. Performing the necessary computations,
we obtain the same Hodge diamonds, and the same Euler characteristics as
for the corresponding varieties of 6.1.

We then went further to check for the appearances of 16’s and 1’s in the
Hodge diamonds of the singular fibres at 1 and indeed, they reappeared.

1 1
0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 0 0 0
0 0 ? 0 0 0 0 ? 0 0
0 16 ? ? 16 0 0 1 ? ? 1 0
0 0 ? 0 0 0 0 ? 0 0
0 0 0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0
1 1

FIGURE 4. The Hodge diamonds of two projectivisations of
the singular fibre over 1 corresponding to Hy = Diag(3,-2,—1),
H =Diag(1,-1,0).

7. OPEN QUESTIONS

We finish by posing the following open questions. How many compacti-
fications can be obtained via homogenisation? Is there a preferred choice
in the sense that it maintains the topology closest to the original variety?
Given two compactifications with distinct numerical invariants, do there exist
compactifications realising the intermediate values of the invariants?
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