
Moduli Stacks of Bundles on Local Surfaces

Oren Ben-Bassat and Elizabeth Gasparim

Abstract We give an explicit groupoid presentation of certain stacks of vector bun-
dles on formal neighborhoods of rational curves inside algebraic surfaces. The pre-
sentation involves a Möbius type action of an automorphism group on a space of
extensions.

1 Introduction

A fundamental question in algebraic geometry is to understand how rational maps
on a variety X affect the moduli of vector bundles on X, that is: suppose X and Y bi-
rationally equivalent, then what is the relation between the various moduli of vector
bundles on X and Y ? Here we focus on the case of surfaces, in which case rational
maps are obtained by blowing up (possibly singular) points. Suppose π : Y → X is
the blow up of a point x in X , with `= π−1(x). Considering pullbacks, one can then
study the relative situation of the moduli of vector bundles on X mapping into the
moduli of vector bundles on Y . Since π is an isomorphism outside ` clearly the heart
of the question lies in the geometry of moduli of bundles on a small neighborhood
of `. This question was addressed from the point of view of moduli spaces of equiv-
alence classes of vector bundles in [G4] for the case when x is a smooth point, and
the geometry of the local moduli was used to prove the Atiyah–Jones conjecture for
rational surfaces. In this paper we consider the moduli stacks of vector bundles in
formal neighborhoods of `, and give explicit groupoid presentations of such moduli
stacks. The stacky point of view, besides clarifying several delicate issues about the
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local moduli also has the advantage that it generalises to the case of singular sur-
faces, where ` is a line with self-intersection `2 =−k <−1. We develop the study of
stacks of bundles on (completions of the) local surfaces Zk = Tot(O(−k)) and give
presentations of certain stacks of rank 2 bundles over these surfaces. The most inter-
esting aspect of these presentations is the “Möbius” transformation (17) discussed
in 2.3.

2 Local surfaces and vector bundles on them

Notation 1 In this paper we will work with (associative, commutative, unital) C-
algebras. Therefore, affine scheme will mean the spectrum of such an algebra, and
all varieties, schemes, and formal schemes are considered over C. We will work
over the site of affine schemes or C-algebras with the faithfully flat topology. The
schemes we will consider are quasi-compact and quasi-separated. For any positive
integer k, we have the algebraic variety

Zk = Tot(OP1(−k)) = SpecP1

(
∞⊕

i=0

OP1(ik)

)

and `∼= P1 its zero section, so that `2 =−k. Let I` be the sheaf of OZk ideals defining

`. We write Z(n)
k for the nth infinitesimal neighborhood of ` and Ẑk = Z(∞)

k for the
formal neighborhood of ` in Zk. Ẑk = (`, limnOZk/In

` ) is the formal scheme given
as the formal completion of Zk along `. It is a (an inductive or direct) limit in the
category of ringed spaces over P1. There is a presentation

Zk =
(

U
⊔

V
)
/∼,

where we will always use the charts U = C2 with coordinates (z,u), and V = C2

with coordinates (ξ ,v), with U ∩V = (C−{0})×C where the equivalence relation
∼ is given by the change of coordinates (ξ ,v)= (z−1,zku). Note that the zero section
` is given in these coordinates by u = 0 in the U-chart and v = 0 in the V -chart. It
is easy to see that I` ∼= O(k). In fact, I` is the line bundle associated to the divisor
−` and since u = ξ kv,

div(u) = `+ k f

where f is the fiber defined by ξ = 0. We similarly have

U (n) = Spec(C[z,u]/(un+1))

and
V (n) = Spec(C[ξ ,v]/(vn+1)).

As above, we have
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Z(n)
k =

(
U (n)

⊔
V (n)

)
/∼

and
Z(∞)

k = Ẑk =
(

Û
⊔

V̂
)
/∼

where Û and V̂ are the formal scheme completions of U and V along `.

Remark 1. Unless we explicitly state that n is finite, in each usage of the spaces Z(n)
k

we are including the case that n = ∞.

These presentations are helpful for describing vector bundles. For instance by the
answer to Serre’s famous question (proved by Seshadri [Se] and in further gener-
ality by Quillen [Qi] and Suslin [Su]), U = Spec(C[z,u]) has no non-trivial vector
bundles; similarly this is true for U (n) and Û by Theorem 7 of [Co]. All the schemes
we have mentioned up until now are Noetherian and Ẑk is a Noetherian formal
scheme. If T is an affine scheme such that Pic(T ) is trivial then

Pic(Ẑk×T )' Pic(Z(n)
k ×T )' Pic(P1×T )' Pic(P1)' Z;

we will use the symbol O( j) for the line bundle with first Chern class j coming from
P1 in any of these spaces. If E is a rank 2 vector bundle of first Chern class zero on
Z(n)

k then the splitting type j≥ 0 of E is the integer such that the restriction of E to `

is isomorphic to O( j)⊕O(− j). For a vector bundle on Z(n)
k ×T we say that it has

constant splitting type j if its splitting type is j over every t ∈ T (C).

For our explicit presentations of stacks, we will need the following basic results
about rank 2 bundles on Z(n)

k .

Lemma 1. Let S be any scheme over C and E a rank 2 vector bundle on Z(n)
k ×S of

constant splitting type j ≥ 0. Then for any s ∈ S(C) there is an open subscheme T
of S containing s and such that the restriction of E to Z(n)

k ×T has the structure of
an extension

0→ O(− j)→ E|
Z(n)

k ×T
→ O( j)→ 0.

Proof. By [G1] Theorem 3.3. E|
Z(n)

k ×{s}
can be written as an algebraic extension

0→ O(− j)→ E|
Z(n)

k ×{s}
→ O( j)→ 0

where j > 0. Consider the leftmost injective map as a nowhere vanishing element
of the space of global sections H0(Z(n)

k ×{s},E|Z(n)
k ×{s}

⊗O( j)). The pushforward

πS∗(E|`×S⊗O( j)) is a vector bundle on S and we have chosen a non-zero point in
the fiber over s. Choose T ′ open in S and containing s and an extension of the above
section to an element of

H0(T ′,(πS∗(E|`×S⊗O( j)))|T ′) = H0(`×T ′,E|`×T ′ ⊗O( j))
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such that this chosen global extension does not vanish on `× T ′ and hence does
not vanish on Z(n)

k ×T ′, and passes through our chosen element of the fiber over s.
This gives us an injective map of constant rank leading to a short exact sequence on
Z(n)

k ×T ′

0→ O(− j)→ E
Z(n)

k ×T ′
→ L→ 0

where L is a line bundle on Z(n)
k ×T ′ isomorphic to O( j) over every geometric point

of T ′. By the see-saw principle there is a T open in T ′ and containing S such that
the restriction of L to Z(n)

k ×T ′ is isomorphic to O( j). Therefore the restriction of

the above short exact sequence to Z(n)
k ×T gives the desired result.

Remark 2. An alternate approach to the Lemma 1 is to start with any vector bundle
which has nowhere zero map of O(− j) to E over `×T for some affine scheme T
and use the fact that H1(`×T, Im

`×T ) = 0 for m > 0 to extend this map order by order

to a map over Z(n)
k ×T which must be nowhere zero.

Lemma 2. Let T be an affine scheme and E an algebraic extension of O
Z(n)

k ×T
mod-

ules
0→ O(− j)→ E→ O( j)→ 0,

over Z(n)
k ×T which splits over `×T for j ≥ 0 then, in the chosen coordinates E

can be described by a transition matrix of the form(
z j p
0 z− j

)
on (U (n)∩V (n))×T, where

p =
min(b(2 j−2)/kc,n)

∑
i=1

j−1

∑
l=ki− j+1

pi,lzlui. (1)

and pi.l ∈ O(T ).

Proof. A Čech cohomology calculation (performed in Theorem 3.3 of [G1]) shows
that

Ext1
Z(n)

k
(O( j),O(− j)) =

C[z,z−1,u]/(un+1)

z− jC[z−1,zku]/((zku)n+1)+ z jC[z,u]/(un+1)

by flat base change for the diagram

Z(n)
k ×T

πT //

π
Z(n)k��

T

��
Z(n)

k
// {·}
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and the Leray spectral sequence for π
Z(n)

k
we have

Ext1
Z(n)

k ×T
(π∗

Z(n)
k

O( j),π∗
Z(n)

k
O(− j)) = H1(Z(n)

k ×T,π∗
Z(n)

k
(O(−2 j)))

= H0(T,R1
πT∗π

∗
Z(n)

k
(O(−2 j))) = H0(T,OT ⊗H1(Z(n)

k ,O(−2 j)))

= H0(T,OT ⊗ Ext1
Z(n)

k
(O( j),O(− j))).

(2)

Remark 3. As a consequence of the above two Lemmas 2 and 1, we see that any
rank 2 vector bundle on Z(n)

k ×T (or Ẑk×T ) takes a special form locally on T and
in this form it is clearly the restriction (completion) of a vector bundle on Zk. The
theorem on formal functions implies then that

̂ExtiZk×T (V,W )∼= Exti
Ẑk×T

(V,W ).

Notation 2 Let

N(n)
j,k = {(i, l)|ki− j+1≤ l ≤ j−1 and 1≤ i≤ min(b(2 j−2)/kc,n)}.

Consider the algebraic variety over C

W (n)
j,k = Spec

(
C[ pi,l | (i, l) ∈ N(n)

j,k ]
)
. (3)

For any fixed j,k it remains finite dimensional even for n = ∞. If we pass to the C
points then we get

W (n)
j,k (C) = {p ∈ Ext1

Z(n)
k
(O( j),O(− j)) | p|` = 0}.

Let

R(n)
j,k =

b(2 j−2)/kc⊕
i=1

j−1⊕
l=ki− j+1

Czlui ⊂ O(U (n)∩V (n)). (4)

of course R(n)
j,k is the set of C points of W (n)

j,k but we distinguish them because of the

different notions of automorphisms of R(n)
j,k and W (n)

j,k .

Remark 4. Note that in our chosen form of transition matrix from equation (1) we
have explicitly chosen p ∈ R(n)

j,k .

Definition 1. Consider the open cover {U (n)×W (n)
j,k ,V

(n)×W (n)
j,k } of Z(n)

k ×W (n)
j,k .

We define E, sometimes called the big bundle, to be the bundle

E
↓

Z(n)
k ×W (n)

j,k
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on Zk×W (n)
j,k defined by transition matrix(

z j p
0 z− j

)
∈ H0((U (n)∩V (n))×W (n)

j,k ,A ut(O⊕2)).

Let T be an affine scheme and p a morphism from T to W (n)
j,k . We denote by Ep the

bundle (also described in Lemma 2) given by the pullback (id
Z(n)

k
, p)∗E of E via the

map

Z(n)
k ×T

(id
Z(n)k

,p)

→ Z(n)
k ×W (n)

j,k .

Lemma 3. [BGK, thm. 4.9] On the first formal neighborhood Z(1)
k , two bundles E

and E ′ with transition matrices(
z j p1
0 z− j

)
and

(
z j p′1
0 z− j

)
respectively are isomorphic if and only if p′1 = λ p1 for some λ ∈ C×.

Remark 5. It follows from this lemma that the coarse moduli space of bundles
on Z(1)

k coming from non-trivial extensions of O( j) by O(− j) is isomorphic to
P2 j−k−2.

Example 1. On higher infinitesimal neighborhoods we need to consider far more
relations among extension classes then just projectivisation to obtain the moduli of
bundles. The simplest of such examples occurs in the case when k = 1 and j = 2, so
that our extension classes have the form

p = (p1,0 + p1,1z)u+ p2,1zu2.

The set of equivalence classes of vector bundles is then C3/∼where the equivalence
relation is generated by

(p1,0, p1,1, p2,1)∼ (λ p1,0,λ p1,1,λ p′2,1) i f (p1,0, p1,1) 6= (0,0), λ 6= 0,
(0,0, p2,1)∼ (0,0,λ p2,1), λ 6= 0.

Note that p′2,1 is does not depend on p, and that the quotient topology makes the
entire space the only open neighborhood of the split bundle, which is the image of
the origin in C3.

2.1 Stacks of vector bundles

We now define the stack of bundles M j(Z
(n)
k ), the main object we seek to understand

in this article.
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Definition 2.
M j(Z

(n)
k ) : Schemes→ Groupoids

given by
T 7→ Hom(T,M j(Z

(n)
k ))

where

ob(Hom(T,M j(Z
(n)
k )) = {rank 2 vector bundles on Z(n)

k ×T which have
splitting type j and first Chern class 0 for every

restriction to Z(n)
k ×{t}, t ∈ T (C)}

(5)

and
mor(Hom(T,M j(Z

(n)
k ))(V1,V2) = Isom(V1,V2).

This is a stack [Lau] with respect to the faithfully flat topology on schemes (C-
algebras). Notice that there is automatically a universal bundle E over Z(n)

k ×
M j(Z

(n)
k ). We can similarly define the stack M j(Ẑk). We similarly have the stacks

M(Z(n)
k ) of bundles where we drop the condition on splitting type.

There is an inverse (or projective) system of stacks of finite type over C:

· · · →M j(Z
(3)
k )→M j(Z

(2)
k )→M j(Z

(1)
k )→M j(Z

(0)
k ) =M j(P1) (6)

whose inverse limit in the category of algebraic stacks is M j(Ẑk). Alternatively we
can consider the inverse system M j(Z

(•)
k ) to be an pro-stack of pro-finite type. This

type of approximation is studied in [Ry]. It seems difficult to compute invariants of
the stacks M j(Z

(n)
k ) using only the definition above so we will find a more explicit

description below.

2.2 The structure of vector bundle isomorphisms

Consider the bundles Ep defined in Definition 1. There is a exact sequence

0→ Hom(Ep,Ep′)→End(O(− j)⊕O( j))−→
Ext1(O(− j)⊕O( j),O(− j)⊕O( j))→ Ext1(Ep,Ep′)→ 0.

(7)

We now explain the structure of isomorphisms between families of bundles coming
from extensions by constructing an explicit splitting for the first non-trivial map in
this sequence. If the bundles Ep and Ep′ on Z(n)

k ×T , given by maps

p, p′ : T → R(n)
j,k
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are isomorphic (see equation (4)) then necessarily they have the same splitting type,
and in such case we can represent them by transition matrices on

(U (n)∩V (n))×T

by
(

z j p
0 z− j

)
and

(
z j p′

0 z− j

)
respectively. An isomorphism between Ep and Ep′ is

given by a pair of invertible matrices

A =

(
aU bU
cU dU

)
regular on U (n)×T and

B =

(
aV bV
cV dV

)
regular on V (n)×T , such that:

B
(

z j p
0 z− j

)
=

(
z j p′

0 z− j

)
A, (8)

or equivalently

B =

(
z j p′

0 z− j

)
A
(

z− j −p
0 z j

)
=

(
aU + z− j p′cU z2 jbU + z j(p′dU −aU p)− pp′cU

z−2 jcU dU − z− j pcU

)
.

(9)

Definition 3. We use the notation Y+ to denote the terms in Y ∈ O((U (n)∩V (n))×
T ) that are not regular on V (n)×T and Y+,≥2 j denotes the terms in Y that are not
regular on V (n)×T and have power of z greater than or equal to 2 j.

Lemma 4. Suppose that j > 0. Then any isomorphism (A,B) between Ep and Ep′

on Z(n)
k ×T has the form

(A,B) = (MU ,MV )+(ΦU (M),ΦV (M)) (10)

where
M = (MU ,MV ) ∈ Aut

Z(n)
k ×T

(O( j)⊕O(− j)).

MU =

(
a bU

cU d

)
and

ΦU (M) =

(
−(z− j p′cU )

+ −z−2 j
(
z j(p′d−ap)− pp′cU

)+,≥2 j

0 (z− j pcU )
+

)
depends only on p, p′ and M and satisfies

[p′d−ap− z− j pp′cU ] = 0 ∈ Ext1
Z(n)

k ×T
(O( j),O(− j)). (11)
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Proof. First suppose that such an isomorphism exists, between Ep and Ep′ . Then we
have (

z j p′

0 z− j

)
A−B

(
z j p
0 z− j

)
= 0. (12)

The left hand side comes out to be(
p′cU +(aU −aV )z j dU p′−aV p+ z jbU − z− jbV

cU z− j− cV z j z− j(dU −dV )− cV p

)
. (13)

The lower left corner of (13) implies first of all that c must be a section c of O(2 j).
We need to arrange for the vanishing of all terms in (13). Therefore, we need to
solve the equations:

aU −aV =−z− j p′cU
z jbU − z− jbV =−dU p′+aV p
dU −dV = z jcV p.

Becasue H1(Z(n)
k ×T,O) vanishes, the first and third equations have solutions which

are unique up to global functions. Let

aU = a− (z− j p′cU )
+

and
dU = d +(z jcV p)+.

These solve the first and third equation. If we substitute into the second equation, it
reads

z jbU − z− jbV =−(z jcV p)+p′+(−(z− j p′cU )
++ z− j p′cU )p−d p′+ap

=−d p′+ap+ z− j pp′cU .
(14)

This implies that

[p′d−ap− z− j pp′cU ] = 0 ∈ Ext1
Z(n)

k ×T
(O( j),O(− j)).

Conversely, suppose that these conditions are satisfied by some a, d, c, p, and p′, let
us record the general form of an element of Isom

Z(n)
k ×T

(Ep,Ep′). It remains only to

determine the expression for bU . By the assumptions we already know that(
z j(p′d−ap)− pp′cU

)+,<2 j

is regular on V (n)×T . Hence

bU = bU − z−2 j (z j(p′d−ap)− pp′cU
)+,≥2 j

.
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Finally, since u divides p and p′, we know that A is invertible if and only if MU is
and therefore the isomorphism (A,B) is invertible if and only if the automorphism
M is invertible.

Remark 6. We conclude that the expression of the element (A,B) of Hom(Ep,Ep′)
under the decomposition (43)

Hom(Ep,Ep′) = Hom(O( j),O(− j))⊕φ(ker(d1,−1
1 ))⊕ψ(ker(d0,0

2 ))

from the appendix is satisfied if we take b ∈ Hom(O( j),O(− j)),

ψU (c) =
(
−(z− j p′cU )

+ z−2 j (pp′cU )
+,≥2 j

cU (z− j pcU )
+

)
and

φU (a,d) =
(

a −z−2 j
(
z j(p′d−ap)

)+,≥2 j

0 d

)
.

2.3 Bundle isomorphism viewed as an equivalence relation

Although we have worked out the structure of the space of isomorphisms between
two given bundles, this does not yet give a criterion for when two bundles are iso-
morphic nor does it provide any understanding of the equivalence relation on W (n)

j,k
given by isomorphisms of vector bundles. We show that there are algebraic groups
G(n)

j,k acting on W (n)
j,k so that the orbits of this action are identified with the equiva-

lence classes. This action (17) takes on the familiar form of a Möbius transforma-
tion. Lange studied in [L] (see also Drézet [Dr]) the question of universal bundles
over the projectivized space of extensions. In a specific example we study here a
more difficult problem, the difference being that we do not remove the origin and
we consider all vector bundle isomorphisms, not just those that correspond to scal-
ing the extension. First we need to define the structure of a scheme on the sets
Aut

Z(n)
k
(O( j)⊕O(− j)) for n finite.

Definition 4. Consider the functors from schemes to sets given by

T 7→ Aut
Z(n)

k ×T
(O( j)⊕O(− j)).

These functors are C-groups (sheaves of groups in the faithfully flat topology
on schemes) and are easily seen to be representable by reduced schemes. These
schemes are in fact affine, being defined inside the finite dimensional affine space

End
Z(n)

k
(O( j)⊕O(− j))
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defined with coordinates as in 8 as the complement of the pre-image of 0 by the
morphism

det0 : End
Z(n)

k
(O( j)⊕O(− j))→ O(Z(n)

k )→ Spec(C[s]).

sending s to the restriction of the determinant to `. When we pass to C points we get
the standard determinant followed by restriction to `

det0 : End
Z(n)

k
(O( j)⊕O(− j))→ O(Z(n)

k )→ O(Z(0)
k ) = C.

We denote these finite dimensional algebraic groups by G(n)
j,k . These form a directed

system of C-spaces (sheaf of sets for the faithfully flat topology on the category of
C-algebras) and their direct limit as a C-space (see [BL1] for this yoga) is repre-
sentable by an infinite dimensional algebraic variety,

G̃ j,k = G(∞)
j,k

which has Aut
Z(∞)

k
(O( j)⊕O(− j)) as its underlying set of C-points. In fact, G̃ j,k is

an infinite-dimensional algebraic group. The sequence G(•)
j,k

· · · → G(3)
j,k → G(2)

j,k → G(1)
j,k → G(0)

j,k = AutP1(O( j)⊕O(− j)) (15)

is an pro-finite-type pro-scheme. We often write elements of Hom(T,G(n)
j,k ) as ma-

trices.

Consider the following direct sum decomposition of the vector space of functions

O
Z(n)

k
(U (n)∩V (n))=O

Z(n)
k
(U (n)∩V (n))�⊕O

Z(n)
k
(U (n)∩V (n))good⊕O

Z(n)
k
(U (n)∩V (n))≺

where the sector named “good” corresponds to the terms appearing in Lemma 1,
and also

z jO
Z(n)

k
(U (n)∩V (n))≺ ⊂ O(V (n))

and
z− jO

Z(n)
k
(U (n)∩V (n))� ⊂ O(U (n))

q−qgood = q�+q≺.

As in equation (8) we write elements of

Hom(T,G(n)
j,k )⊂ H0(Z(n)

k ×T,O⊕2⊕O(2 j)⊕O(−2 j))

in the form

g =

(
a b
c d

)
. (16)
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with b = (bU ,bV ) and bU holomorphic on U (n)×T , etc. First of all notice that the
group Hom(T,G(n)

j,k ) acts on the functions p on U (n)∩V (n)×T which vanish on the
zero section by the formula

gp =
ap− z jbU

d− z− j pcU
. (17)

A special case (where b and c are taken to be zero) of this action was observed
for general varieties and bundles in [Dr]. For n finite, such functions vanishing
on ` belong to uC[z,z−1][u]/(un+1), in the case n = ∞ such functions belong to
uC[z,z−1][[u]]. The action p 7→ gp does not preserve the finite dimensional space
R(n)

j,k which was written in (4). This means that we need to somehow correct the
morphism (g, p) 7→ gp. This will happen in the next definition.

Definition 5. Define a morphism

G(n)
j,k ×R(n)

j,k → R(n)
j,k

by

(g, p) 7→ g• p =
ap− z jbU

d− z− j pcU
−
(

ap− z jbU

d− z− j pcU

)�
−
(

ap− z jbU

d− z− j pcU

)≺
.

=

(
ap− z jbU

d− z− j pcU

)
good

(18)

This morphism will become one of the structure maps of a groupoid (see equation
(40)). It is not the action of a group.

Consider

Ag(p) =
(

a− (z− j pcU )
+ bU − z−2 j

(
z j ((g• p)d−ap)− p(g• p)cU

)+,≥2 j

cU d +(z− jcU (g• p))+

)
(19)

and

Bg(p) =
(

a+(z− j pcU )
+ bV +

(
z j ((g• p)d−ap)− p(g• p)cU

)+,<2 j

cV d− (z− jcU (g• p))+

)
. (20)

They are regular over U (n) × T and V (n) × T respectively because they satisfy
(Ag(p),Bg(p)) = (MU ,MV ) from Lemma 4 in the case that p′ = g • p. That is to
say, they satisfy

Bg(p)
(

z j p
0 z− j

)
=

(
z j g• p
0 z− j

)
Ag(p) (21)

and so the pair (Ag(p),Bg(p)) provides an isomorphism between Ep and Eg•p. We
have shown the following Lemma.

Lemma 5. There is a morphism



Moduli Stacks of Bundles on Local Surfaces 13

G(n)
j,k ×R(n)

j,k → R(n)
j,k

(g, p) 7→ g• p (22)

such that for two bundles Ep and Ep′ of constant splitting type j,

Isom
Z(n)

k ×T
(Ep,Ep′) = {g ∈ Hom(T,G(n)

j,k ) | g• p = p′}

= {g ∈ Hom(T,G(n)
j,k ) | 11 is satisfied}.

(23)

�
Consider the isomorphism

(Ag1(g2 • p)Ag2(p),Bg1(g2 • p)Bg2(p))

between Ep and Eg1•(g2•p). In Lemma 4, we defined an element

g1 •p g2 ∈ G(n)
j,k (C)

such that this isomorphism equals (Ag1•pg2 ,Bg1•pg2). Similarly, the isomorphism
(Ag(p)−1,Bg(p)−1) between Eg•p and Ep corresponds to a an element

g(−1)p ∈ G(n)
j,k (C). (24)

From here it is clear (since both Ae
G(n)

j,k

(p) and Be
G(n)

j,k

(p) are the identity matrix) that

g•p g(−1)p = e
G(n)

j,k
= g(−1)p •p g. (25)

Definition 6. Define g1 •p g2 and g(−1)p to be the elements of G(n)
j,k (C) correspond-

ing via Lemma 4 to the isomorphisms (Ag1(g2 • p)Ag2(p),Bg1(g2 • p)Bg2(p)) and
(Ag(p)−1,Bg(p)−1) described above.

The elements g1 •p g2 vary algebraically with g1 and g2 and give a morphism of
schemes

G(n)
j,k ×G(n)

j,k ×W (n)
j,k → G(n)

j,k

(g1,g2, p) 7→ g1 •p g2.

The restriction to p = 0 in W (n)
j,k gives us back the standard multiplication but in

general this structure does depend on p.
Therefore by definition we have

Bg1(g2 • p)Bg2(p) = Bg1•pg2(p). (26)

(and also Ag1(g2 • p)Ag2(p) = Ag1•pg2(p)). An immediate consequence of this to-
gether with (21) is
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g1 • (g2 • p) = (g1 •p g2)• p, (27)

and we also have

B(g1•(g3•p)g2)•pg3(p) = Bg1•(g3•p)g2(g3 • p)Bg3(p) = Bg1(g2 • (g3 • p))Bg2(g3 • p)Bg3(p)

= Bg1(g2 • (g3 • p))Bg2•pg3(p) = Bg1•p(g2•pg3)(p)
(28)

and similarly for Ag(p). Because every isomorphism (A,B) which takes one of our
chosen transition matrices corresponding to a bundle Ep to another transition matrix
of the same form corresponds (7) to a unique g ∈ Hom(T,G(n)

j,k ) we conclude that

(g1 •(g3•p) g2)•p g3 = g1 •p (g2 •p g3). (29)

This will be used to verify the associativity of the groupoid structure. A direct in-
spection of (18), (19) and (20) shows that identity matrix e

G(n)
j,k

satisfies

e
G(n)

j,k
• p = p (30)

for any p and corresponds to the identity map from Ep to itself. Therefore we of
course have

e
G(n)

j,k
•p g = g = g•p e

G(n)
j,k

(31)

for any p.

3 An explicit groupoid in schemes

In this section we describe an explicit groupoid in schemes and show that its associ-
ated stack is isomorphic to the stack of rank 2 vector bundles of splitting type j and
first Chern class 0 on Z(n)

k .

3.1 Review of groupoids in schemes and their sheaf theory

We begin with a review of the definition of a groupoid in schemes and the notion of
a sheaf on a groupoid in schemes. Recall that a groupoid

G = (A,R,s, t,m,e, ι)

in schemes consists of schemes A (the atlas) and R (the relations), morphisms
s, t,m,e, ι
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R

s

HH

t

��
Aeoo (32)

Rt ×A sR
m // R

and
R ι // R

which satisfy some conditions which we write below. Here

Rt ×A sR = {(r1,r2) ∈ R×R|t(r1) = s(r2)}.

Let p1, p2 be the first and second projections

Rt ×A sR
p1,p2−→ R

and let ∆ be the diagonal
R×R ∆←− R.

The morphisms then must satisfy

m◦ (m, idR) = m◦ (idR,m) (33)

on all composable elements of R×R×R,

t ◦m = t ◦ p2, s◦m = s◦ p1 (34)

on all composable elements of R×R

m◦ (ι , idR)◦∆ = e◦ s, m◦ (idR, ι)◦∆ = e◦ s (35)

on R, and also

m◦ (idR,e◦ t)◦∆ = idR, m◦ (e◦ s, idR)◦∆ = idR (36)

on R. Notice that for any scheme S that by taking the set of morphisms of schemes
from S into R and A one gets a pair of sets and these naturally form a groupoid in
sets using the obvious maps. We denote this groupoid in sets by

Hom(S,G ).

A (coherent/locally free of rank r) sheaf of modules on the groupoid consists of
a (coherent/locally free of rank r) sheaf S of OA modules on A together with an
isomorphism f of sheaves of OR modules over R



16 Oren Ben-Bassat and Elizabeth Gasparim

f : s∗S → t∗S

which satisfies
p∗2 f ◦ p∗1 f = m∗ f (37)

and
e∗ f = id. (38)

To make sense of this equality, one must use the identities

s◦ p1 = s◦m, and t ◦ p2 = t ◦m.

3.2 Stacks from groupoids

Let G = (A,R,s, t,m,e, ι) be a groupoid in schemes.
We associate to it a stack [G ] defined as the stack on the fppf site associated to

the prestack pre-[G ] which associates to any test scheme T the groupoid in sets

pre-[G ](T ) = Hom(T,G ).

Notice that such a morphism consists of a map from maps from T to A, and T to R
which satisfy the obvious compatibilities.

Remark 7. In the case that R = G×A and the groupoid structure is just given by
a group action of G on A, we may denote the associated quotient stack by [A/G],
leaving the structure implicit.

There is an equivalence [Lau] of Abelian categories of coherent sheaves which
takes vector bundles to vector bundles

Coh(G )
∼=−→ Coh([G ]). (39)

Definition 7. We denote by [S ] the sheaf on [G ] corresponding to a sheaf S on G
under the equivalence 39 given above.

3.3 Groupoid presentations for stacks of rank 2 bundles

We define a groupoid in schemes to be called G
(n)
j,k . The atlas of G

(n)
j,k is W (n)

j,k and the

relations are G(n)
j,k ×W (n)

j,k .
The arrow s is given by the projection

G(n)
j,k ×W (n)

j,k
s→W (n)

j,k .

defined by
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(g, p) 7→ p.

The arrow t is given by the map

G(n)
j,k ×W (n)

j,k
t→W (n)

j,k . (40)

defined by
(g, p) 7→ g• p.

where g• p is defined in Definition 5. The multiplication

m : (G(n)
j,k ×W (n)

j,k )s×W (n)
j,k

t(G
(n)
j,k ×W (n)

j,k )→ G(n)
j,k ×W (n)

j,k

is given by
m((g1,g2 • p),(g2, p)) = (g1 •p g2, p)

where g1 •p g2 is defined in definition 6.
The identity section is defined by

e(p) = (id, p)

and the inverse is defined by

ι(g, p) = (g(−1)p ,g• p)

where g(−1)p was defined in 5. The associativity condition (33) follows from (29).
The conditions (34), (36) and (35) follow from (27), (31), and (25).

We get an inverse system G
(•)
j,k in the category of groupoids in schemes:

· · · → G
(3)
j,k → G

(2)
j,k → G

(1)
j,k → G

(0)
j,k . (41)

and the inverse limit is G̃ j,k = G
(∞)
j,k .

3.4 The morphism defined via the big bundle E

The big bundle E defines a morphism of stacks from W (n)
j,k to M j(Z

(n)
k ) as follows.

Given an affine scheme T , we have a map

ϕT : Hom(T,W (n)
j,k )→ Hom(T,M j(Z

(n)
k ))

f 7→ (id, f )∗E

given by sending f to the pullback of E via the map

(id, f ) : Z(n)
k ×T → Z(n)

k ×W (n)
j,k .
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Lemma 6. For each j ≥ 0 the substacks

M≤ j(Z
(n)
k ) =

⋃
0≤i≤ j

Mi(Z
(n)
k )

of M(Z(n)
k ) are given by

T 7→
{

E ∈M(Z(n)
k )(T )|πT∗(E⊗O( j))is generated by global sections andR1

πT∗(E⊗O( j)) = 0
}
.

Proof. By Serre’s theorem, M(Z(n)
k ) is covered by the open substacks defined

T 7→
{

E ∈M(Z(n)
k )(T )|πT∗(E⊗O( j))is generated by global sections andR1

πT∗(E⊗O( j)) = 0
}
.

In order to show the Lemma we can work locally in the site, and show the equiva-
lence using the prestacks pre-[G (n)

j,k ]. First suppose that E has constant (in T ) splitting
type less than or equal to j. Using Lemma 1, we can assume (after shrinking T ) that
is an extension of O(i) by O(−i) for 0 ≤ i ≤ j. Then E ⊗O(i) is an extension of
O(2i) by O . Due to the fact that H1(Z(n)

k × T,O) = 0, the resulting sequence on
global sections is exact. Both of the line bundles O(2i) and O are generated by their
global sections, and the fact that πT∗(E⊗O(i)) and therefore πT∗(E⊗O( j)) is gen-
erated by its global sections follows. However, H1(Z(n)

k ,O(a)) vanishes for a ≥ 0
and therefore R1πT∗(E⊗O( j)) vanishes. Conversely, suppose that πT∗(E⊗O( j))
is generated by global sections and R1πT∗(E ⊗O( j)) = 0. The second condition
implies (see remark 8) that for every geometric point t of T , the splitting type of
the restriction of E to Z(n)

k ×{t} is less than or equal to j. Therefore, E belongs to

M≤ j(Z
(n)
k )(T ).

3.5 The universal bundle Ẽ

We now construct the universal bundle on the groupoid

Z(n)
k ×G

(n)
j,k .

The groupoid in question has atlas Z(n)
k ×W (n)

j,k and relations Z(n)
k ×G(n)

j,k ×W (n)
j,k . We

use the description of sheaves on groupoids in schemes given in subsection 3.1.
We start with the big bundle E on Z(n)

k ×W (n)
j,k which was defined in Definition 1.

Consider the map in

Isom
Z(n)

k ×G(n)
j,k×W (n)

j,k
((id

Z(n)
k
, t)∗E,(id

Z(n)
k
,s)∗E)

given by the pair
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(Ag(p),Bg(p)) ∈ Aut
(

U (n)×G(n)
j,k ×W (n)

j,k ,O
⊕2
)
×Aut

(
V (n)×G(n)

j,k ×W (n)
j,k ,O

⊕2
)

which was defined in equations (19) and (20). We need to consider the pullbacks of
the isomorphism to

Z(n)
k × (G(n)

j,k ×W (n)
j,k )s×W (n)

j,k
t(G

(n)
j,k ×W (n)

j,k )

via the maps
(id

Z(n)
k
,m),(id

Z(n)
k
, p1),(idZ(n)

k
, p2)

where m, p1, p2 are the maps

(G(n)
j,k ×W (n)

j,k )s×W (n)
j,k

t(G
(n)
j,k ×W (n)

j,k )→ G(n)
j,k ×W (n)

j,k

given by
m((g1,g2 • p),(g2, p)) = (g1 •p g2, p)

p1 ((g1,g2 • p),(g2, p)) = (g1,g2 • p)

and
p2 ((g1,g2 • p),(g2, p)) = (g2, p).

These pullbacks are described by the pairs of elements of

Aut
(

U (n)× (G(n)
j,k ×W (n)

j,k )s×W (n)
j,k

t(G
(n)
j,k ×W (n)

j,k ),O
⊕2
)

and

Aut
(

V (n)× (G(n)
j,k ×W (n)

j,k )s×W (n)
j,k

t(G
(n)
j,k ×W (n)

j,k ),O
⊕2
)

given by
(Ag1•pg2(p),Bg1•pg2(p)),

(Ag1(g2 • p),Bg1(g2 • p)),

and
(Ag2(p),Bg2(p))

respectively. Therefore identity (37) follows from (26) while (38) follows from (30)
and consequently we have defined a vector bundle on the groupoid in accordance
with the description in 3.1.

3.6 The equivalence of stacks

Let us first mention groupoid presentations in the case of line bundles.
The stack of line bundles on the Z(n)

k is equivalent to
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Z× [•/O(Z(n)
k )×].

For example when k = 1, n = ∞ this stack is equivalent to

Z× [•/C[[x,y]]×].

In section 3 we defined a groupoid in schemes

G
(n)
j,k = (G(n)

j,k ×W (n)
j,k ,W

(n)
j,k ,m,e, ι),

the associated pre-stack pre-[G (n)
j,k ] and the associated stack [G

(n)
j,k ] on the fppf site.

Theorem 3. The natural map W (n)
j,k →M j(Z

(n)
k ) given by the big bundle E which

was defined in Definition 1 induces an isomorphism of stacks

[G
(n)
j,k ]
∼=M j(Z

(n)
k ).

Furthermore, there is a vector bundle

[Ẽ ]
↓

Z(n)
k × [G

(n)
j,k ]

whose pullback to Z(n)
k ×W (n)

j,k is the big bundle E, and is identified via the above

isomorphism with the universal bundle E on Z(n)
k ×M j(Z

(n)
k ).

Here, [G (n)
j,k ] is the stack associated to the groupoid G

(n)
j,k . This association is reviewed

in 3.2.

Proof. We will prove this theorem by first defining a morphism of stacks over the
fppf site and then show that it is locally in the site an equivalence of categories.
Conisder the morphism of pre-stacks

pre-F : pre-[G (n)
j,k ]→M j(Z

(n)
k )

by
pre-FT ( f ) = (id

Z(n)
k
, f )∗Ẽ

where f is a morphism of groupoids from T to G
(n)
j,k . Because M j(Z

(n)
k ) is already a

stack over the fppf site, we get for free a morphism of the associated stacks over the
fppf site

F : [G (n)
j,k ]→M j(Z

(n)
k ).

In order to show that this is an equivalence we need only to show that it is locally
an isomorphism. Consider a vector bundle E on Z(n)

k ×T for an affine C-scheme T
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and write it somehow (it does not matter how) as an extension of O( j) by O(− j)
possibly after renaming T . Using equation 2 we have

Ext1
Z(n)

k ×T
(π∗

Z(n)
k

O( j),π∗
Z(n)

k
O(− j)) =

= H0(T,OT ⊗ Ext1
Z(n)

k
(O( j),O(− j))) = Hom(T,W (n)

j,k ).

We can conclude that choosing (locally in the test schemes) the structure of an ex-
tension gives maps from T to the atlas of G

(n)
j,k . It remains to show that the ambiguity

in such choices is given by maps from T to the relations of G
(n)
j,k . Suppose we have

two maps p and p′ from T to W (n)
j,k . We need to show that

Isom
[G

(n)
j,k ](T )

(p, p′)∼= Isom
Z(n)

k ×T
((id

Z(n)
k
, p)∗E,(id

Z(n)
k
, p′)∗E).

We have already naturally identified these two sets in Lemma 4.

We can use some easy observations about the explicit presentation we have es-
tablished to give some properties of the stacks M j(Z

(n)
k ). First of all G(n)

j,k and W (n)
j,k

are reduced, irreducible, affine algebraic varieties. Notice that s is a projection and
the map t factors as a Zariski open embedding followed by a projection

R = G(n)
j,k ×W (n)

j,k
//

t

))

End
Z(n)

k
(O( j)⊕O(− j))×W (n)

j,k

��

A =W (n)
j,k .

where the horizontal map is

(g, p) 7→ (g,g• p).

The following could be concluded from the general construction of these stacks of
vector bundles using Quot schemes due to Laumon and Moret-Bailly but we can
give here a direct proof.

Corollary 1. For every finite n, the stack M j(Z
(n)
k ) is an Artin stack.

Proof. When n is finite then G(n)
j,k and W (n)

j,k are smooth affine varieties of finite type.
By [Lau] cor. 4.7, in order to conclude that it is an Artin stack, we need to show that
s and t are flat and that the morphism

(s, t) : R→ A×A

is separated and quasi-compact. Since n is finite, s and t are in fact smooth and
therefore certainly flat. Quasi-compactness is obvious since R is quasi-compact. To
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see that (s, t) is separated we need to see that the induced diagonal

R→ R(s,t)×A×A (s,t)R (42)

is closed. Notice that R(s,t)×A×A (s,t)R is a closed subvariety of

G(n)
j,k ×G(n)

j,k ×W (n)
j,k

defined by the equation
g1 • p = g2 • p.

The image of the diagonal (42) is therefore closed, being just the intersection inside

G(n)
j,k ×G(n)

j,k ×W (n)
j,k

of
R(s,t)×A×A (s,t)R

with the closed subvariety
∆

G(n)
j,k
×W (n)

j,k .

where
∆

G(n)
j,k
⊂ G(n)

j,k ×G(n)
j,k

is the diagonal.

4 Applications

In a forthcoming article [BeG] we will use these groupoid presentations to calcu-
late the space of deformations of the moduli stacks M j(Z

(n)
k ). To do this one must

calculate the cohomology of the tangent complex (thought of as a complex of co-
herent sheaves) on these stacks. We then consider deformations of the Z(n)

k . These
include both classical and non-commutative deformations of the type considered in
[BBP] and [To]. By considering stacks of vector bundles over universal families of
these deformations we get natural deformations of the stacks M j(Z

(n)
k ). We investi-

gate the corresponding map from deformations of Z(n)
k to deformations of M j(Z

(n)
k ).

This map is neither injective nor surjective. Such maps are well understood for the
case of curves (see for example [NR]); whereas for surfaces such maps are only un-
derstood in a few special cases, such as Mukai’s [Mu] description for the case of K3
surfaces. In general such maps are quite mysterious for the case of surfaces. Thus,
it is interesting to look at the question in the intermediate case of formal neighbor-
hoods of curves inside surfaces.

Consider a proper algebraic surface X over C. By attaching the stacks M j(Ẑk)
to M(X) in the correct way one gets certain substacks M j(Y ) of the stack of
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vector bundles on the blow up of X at some point. Consider the punctured space
Z◦k = Zk− ` and the punctured formal neighborhood Ẑk

◦
which is defined in [BT]

using Berkovich’s analytic geometry. Now let Y is any algebraic surface containing
a rational curve ` with `2 =−k, k > 0 then let Y ◦ =Y − `. Let M(Y ) be the stack of
all vector bundles of rank 2 whose restriction to ` has first Chern class zero, while
M(Y ◦) and M(Ẑk

◦
) are the stacks of all vector bundles of rank 2 on Y ◦ and Ẑk

◦
re-

spectively. By taking stacks of vector bundles and using the main theorem of [BT],
we get a fiber product diagram of stacks along with the substacks of splitting type j,

M(Y )

$$zz

M j(Y )oo

$$
M(Y ◦)

$$

33

M(Ẑk)

zz

M j(Ẑk)oo

M(Ẑk
◦
)

33

consisting of the above diagram with the solid arrows only. The dotted curved ar-
rows going up here exist only in the case that k = 1 and when the image of ` is a
smooth point under the contraction of `. Suppose we are in this case and π : Y → X
is the contraction of `. Then the dotted arrows are sections of the arrows in the op-
posite direction and are given by extending a bundle from Y ◦ = Y − ` ∼= X −{x}
to a bundle in M(X) by taking the double dual of its pushforward and then pulling
back the bundle via π to Y (and similarly on the other side). This diagram is an
algebraic version of the holomorphic patching construction used in [G4] and can
be used to get information about the relationship of M j(Y ) and M(Y − `) from the
relationship of M j(Ẑk) and M(Ẑk

◦
). This version of patching using stacks is a much

more powerful construction, in particular avoiding all-together the use of framings,
hence eliminating the unnecessarily complicated issues of infinite dimensionality of
the space of reframings of each individual bundle. In this article we have focused
on a description of M j(Ẑk). The application to topological information will appear
in a forthcoming article [B2] where we use the groupoid presentation to compute
homology, cohomology and homotopy groups of the stacks of bundles.

Another reason why using stacks of bundles is preferable for gluing purposes
over the construction via framings is that framings (in the sense of trivialising sec-
tions) simply do not exist in general. For the case of a surface with a−1 line it turns
out to be possible to add framings to all holomorphic bundles, that is, every bundle
on Ẑ1 is trivial on Ẑ◦1 , so one can consider pairs of bundles together with framings,
and glue by identifying framings. However, for elements of M j(Ẑk) only those sat-
isfying j = 0 mod k are trivial on Ẑk

◦
. This argument becomes even more relevant

if one considers curves inside threefolds. For instance over completion Ŵ1 of the
resolved conifold W1 = Tot(O(−1)⊕O(−1) we can consider also rank 2 bundles
with splitting ( j,− j) and define stacks M j(Ŵ1) but here only the trivial bundle is
frameable in the sense of [G4].
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Appendix A. Some cohomology groups

The ring of global functions on Ẑk is

O(Ẑk) = C[[x0,x1, . . . ,xk]]
/k−2

∑
i=0

k

∑
j=i+2

(
xix j− xi+1x j−1

)
,

and for Z(n)
k one gets O(Z(n)

k ) = O(Zk)/mn+1 where m is the ideal (x0, . . . ,xk). Note
that here xi = ziu in terms of the original coordinates on U and U (n). The zeroth
cohomology is the torsion-free O(Ẑk) module

H0(Ẑk,O(s)) =
⊕

ki+s−l≥0,l≥0,i≥0

Czlui ⊂ O(Û).

Similarly, we have the O(Z(n)
k ) module

H0(Z(n)
k ,O(s)) =

⊕
ki+s−l≥0,l≥0,n≥i≥0

Czlui ⊂ O(U (n)).

Remark 8. The set H0(Z(n)
k ,O(s)) is the C points of the spectrum of the polynomial

algebra freely generated over C by variables indexed by pairs (l, i) such that ki+s−
l ≥ 0, l ≥ 0,n≥ i≥ 0. It is also easy to see that H1(Z(n)

k ,O(s)) vanishes for s≥ 0.

Appendix B. The cohomology spectral sequence of H om(E,F)

Consider a scheme Z covered by just two affine open sets U1 and U2 and two rank 2
vector bundles E and F on Z which trivialize on the Ui. Assume also that H1(Z,O)=
0. The Čech complex for computing the cohomology of H om(E,F) on Z looks like

HomU1(E|U1 ,F |U1)⊕HomU2(E|U2 ,F |U2)→ HomU1∩U2(E|U1∩U2 ,F |U1∩U2).

If we choose local trivializations for E|U1 ,E|U2 and F |U1 ,F |U2 then the complex
becomes

HomU1(O
⊕2,O⊕2)⊕HomU2(O

⊕2,O⊕2)→ HomU1∩U2(O
⊕2,O⊕2)
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with differential
(A,B) 7→ GEA−BGF

where GE ,GF are the transition matrices of E and F . On the other hand suppose we
know that E and F can be written on Z as extensions of line bundles L2 by L1. By
choosing local splittings the Čech complex becomes

EndU1(O
⊕2)⊕EndU2(O

⊕2)
D1→ EndU1∩U2(O

⊕2)

D1(N1,N2) =

(
g1 0
0 g2

)
N1−N2

(
g1 0
0 g2

)
,

D2(M1,M2) =

(
g1 pE
0 g2

)
M1−M2

(
g1 pF
0 g2

)
.

ker(D1)
D2−→ coker(D1)

Let us compute the cohomology groups

ker(D2) = Hom(E,F)∼= H0(X ,H om(E,F))

and
coker(D2) = Ext1(E,F)∼= H1(X ,H om(E,F))

in terms of the extension and cohomology groups of the Li. The filtration on
H om(E,F) reads

0⊂H om(L2,L1)⊂H om(E,L1)+H om(L2,F)⊂H om(E,F)

with associated graded pieces H om(L2,L1), E nd(L1)⊕E nd(L2), and H om(L1,L2).
The associated spectral sequence computing the cohomology H om(E,F) has an E1
term which looks like

q = 2
...

...
...

...

q = 1
...

...
...

...

q = 0 Hom(L1,L2) 0
... 0

q =−1 End(L1)⊕End(L2) Ext1(L2,L1) 0

q =−2 Hom(L2,L1) 0

q =−3 0

p = 0 p = 1 p = 2 p = 3
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The E2 term looks like

q = 2
...

...
...

...

q = 1
...

...
...

...

q = 0 Hom(L1,L2) 0
... 0

q =−1 ker(d1,−1
1 ) coker(d1,−1

1 ) 0

q =−2 Hom(L2,L1) 0

q =−3 0

p = 0 p = 1 p = 2 p = 3

The E3 term looks like

q = 2
...

...
...

...

q = 1
...

...
...

...

q = 0 ker(d0,0
2 ) 0

... 0

q =−1 ker(d1,−1
1 ) coker(d1,−1

1 )/im(d0,0
2 ) 0

q =−2 Hom(L2,L1) 0

q =−3 0

p = 0 p = 1 p = 2 p = 3

The first differential we consider is

H0(X ,O)⊕2 = End(L1)⊕End(L2)
d1,−1

1→ Ext1(L2,L1).

It is the connecting map for the cohomology of the short exact sequence

0→H om(L2,L1)→H om(L2,F)+H om(E,L1)→ E nd(L1)⊕E nd(L2)→ 0

Consider the induced filtration on Hom(E,F) given by
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0⊂ Hom(L2,L1)⊂ Hom(E,L1)+Hom(L2,F)⊂ Hom(E,F).

One has
Hom(E,F)

Hom(E,L1)+Hom(L2,F)
∼= ker(d0,0

2 )⊂ Hom(L1,L2),

and
Hom(E,L1)+Hom(L2,F)

Hom(L2,L1)
∼= ker(d1,−1

1 )⊂ H0(X ,O)⊕2.

For any choices of splittings

Hom(E,F)
ψ← ker(d0,0

2 )⊂ Hom(L1,L2)

and
Hom(E,L1)+Hom(L2,F)

φ← ker(d1,−1
1 )⊂ H0(X ,O)⊕2

we get a decomposition

Hom(E,F) = Hom(L2,L1)⊕φ(ker(d1,−1
1 ))⊕ψ(ker(d0,0

2 )). (43)

We record formulas for d1,−1
1 and d0,0

2 in the case that X = Z(n)
k ×T for some affine

scheme T , L1 = O(− j), L2 = O( j), E = Ep, F = Ep′ .

d1,−1
1 : H0(X ,(L1⊗L∨1 )⊕ (L2⊗L∨2 ))→ Ext1(L2,L1)

We compute (
z j p′

0 z− j

)(
a 0
0 d

)
−
(

a 0
0 d

)(
z j p
0 z− j

)
=

(
0 d p′−ap
0 0

)
.

Therefore the element of Ext1(L2,L1) to which the pair (a,d) maps is represented
by (d p′−ap)|(U(n)∩V (n))×T .The differential

d1,−1
1 : H0(X ,O⊕2)→ Ext1(O( j),O(− j))

(a,d) 7→ d p′−ap.

In order to write down the next differential

d0,0
2 : Hom(O(− j),O( j))→ Ext1(O( j),O(− j))/image(d1,−1

1 ),

we choose regular functions αU ,δU on U and αV ,δV on V such that

−z− j p′cU = αU −αV

z j pcU = δU −δV

so
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d0,0
2 (c) = δU p′−αV p.
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